Individualised multifactorial lifestyle intervention trial for high-risk cardiovascular patients in primary care

Eeva Ketola, Marjukka Mäkelä and Matti Klockars

SUMMARY
Background: The multiprofessional teams in Finnish health centres are well placed to carry out interventions aimed at the prevention of cardiovascular diseases.
Aim: To evaluate the effectiveness of an individually tailored multifactorial lifestyle intervention in primary care for individuals at high risk for cardiovascular disease.
Design of study: A randomised controlled trial was conducted over 24 months with interim assessments at six and 12 months.
Setting: A health centre in Finland with a patient population of 11,000.
Method: One hundred and fifty adults aged 18 to 65 years old with existing cardiovascular disease or multiple risk factors were randomised to active multiprofessional risk factor intervention or to standard care. The main outcome measure was a change in cardiovascular risk-factor score. Secondary outcomes were changes in blood pressure, weight, body-mass index, serum cholesterol, blood glucose, smoking cessation, and exercise habits.
Results: The cardiovascular risk score decreased by 28% in the intervention group (23% in the control group), body weight decreased by 3.7% (2%) and total cholesterol decreased by 10.8% (6.5%), while time engaged in exercise increased by 39% (43%). Differences were not significant.
Conclusions: Cardiovascular risk levels of high-risk individuals decreased in both intervention and control groups. Primary care prevention should be targeted to high-risk persons. Long-term follow-up studies are needed.
Key words: lifestyle intervention; cardiovascular disease; risk factor; randomised controlled trial.

Introduction
The prevention of cardiovascular diseases (CVDs) is a constant public health concern. A number of randomised controlled trials on risk factor interventions have been done; however, only few of these have been performed in primary care. Clinicians in both primary and secondary care are poor at preventive approaches to tackling CVD. Multifactorial interventions, in particular, tend to reduce risks. In terms of secondary prevention, lifestyle interventions appear to reduce both morbidity and mortality.

The most commonly used tools for evaluating risk, such as the Sheffield Table or New Zealand Model modified from the Framingham study, account for certain risk factors (total cholesterol, hypertension, smoking, and diabetes) and are age and sex dependent. However, they do not include other lifestyle factors, such as being overweight and exercise habits.

For better cost-effectiveness, it would make sense to target interventions at high-risk populations. There is little data on preventive actions to high-risk individuals in primary care. This study evaluated the effectiveness of an individual lifestyle intervention on risk factors in patients with high risk for CVD in a primary care setting without additional resources.

Method
Study population
Finnish general practitioners (GPs) care for the population within defined geographical areas. Patients were recruited from the Helsinki Northern Health Centre which has a typical suburban population of 11,000 inhabitants, serviced by five GPs each with a patient list of between 1900 and 2500 people. About 25% of the population has an increased risk for CVD. Some 45% of the population consult at the health centre annually. The practice of risk factor recording in this health centre was audited in 1995, before commencing a new quality improvement programme for the staff. This programme was aimed at improving preventive activities carried out by a multiprofessional team for the earlier detection of high-risk patients and better documentation of risk factors. Local guidelines for CVD prevention were provided and a risk factor form was introduced to assist in screening.

The CVD risk factor scores were calculated using a modified method from the North Karelia project, as described by the Finnish Heart Association. The risk score describes the additive risk for different risk factors (body-mass index [BMI], systolic and diastolic blood pressure, exercise and smoking habits, and total cholesterol) but does not account for age and sex in the same way that scores modified from...
E Ketola, M Mäkelä and M Klockars

HOW THIS FITS IN

What do we know?
Cardiovascular disease prevention in primary care is most useful when target-
ed at individuals with several risk factors. In particular, multifactorial lifestyle interventions can
reduce the levels of these risk factors.

What does this paper add?
A minimal individually tailored lifestyle intervention can reduce cardiovascular risks in a high-risk primary care population.
Risk scores decreased also in the control group, which only
received written information on healthy lifestyles.

the Framingham study do. However, the use of this score
assists the staff in recognising, informing and treating high-
risk patients. It also provides a tool for both the patient and
the doctor for observing the reduction of risk factors over a
short time, rather than just estimating risk changes for long-
term morbidity or mortality endpoints.

Working-age patients with a high CVD risk score (>4.5)
were recruited over a five-month period between February
and June 1996. Patients were included if they agreed to par-
cipate in the study for two years, spoke Finnish, had no
other severe diseases, and were not pregnant. The study
was approved by the ethical committee of Helsinki Health
Care Organisation.

This sample size could detect a 1.2 point difference in the
means of the risk score with 90% power, assuming a stan-
dard deviation of 2.2 using a two-group means of the risk score with 90% power, assuming a stan-
dard deviation of 2.2 using a two-group t-test. Patients were
randomised into two groups of equal size using sealed
envelopes containing the written information for the group.
Of the 150 adults (aged 33 to 65 years) entering the trial, 33
men and 42 women were randomised to the intervention
group while 39 men and 36 women remained as controls.
Twenty-eight per cent of the intervention group (32% of con-
trols) were at primary prevention level. The remaining
patients already had CVD.

Intervention methods and follow-up
The health centre team consisted of five doctors, five nurs-
es, a dietician, and a physiotherapist. The intervention group
was seen by the doctor and nurse at baseline, six months,
12 months, and 24 months over two years. Compliance was
enhanced by having a research nurse who contacted patients if they did not schedule a follow-up appointment.
During the first consultation, an individual multifactorial
intervention programme was tailored for each patient
according to the risk factor status and needs of the patients.
This could include booklets of healthy lifestyle habits, indi-
vidual dietary counselling by a nurse (or a dietician when the
BMI was >35), joining a weight-reduction group, and group
or individual physiotherapy programme. If the goals set for
cholesterol, blood pressure or blood glucose levels were not
achieved then medication was recommended and added if
the patient was in agreement.

The control group received standard care and a booklet
on healthy lifestyle habits. The controls were seen twice: at
baseline and at the end of the intervention.

Measurements
Blood pressure was measured three times in a sitting posi-
tion using calibrated mercury sphygmanometers with the
cuff adjusted to arm circumference. The lowest measure-
ment was recorded. Blood glucose and total cholesterol
were analysed using Beckman reagents and a Syncron
Analyzer using the enzymatic method. Weight was mea-
sured with SECA scales without shoes, BMI was calculated
as weight (kg)/[height (m)]^2. Possible CVD medication, exer-
cise amounts, smoking and alcohol consumption habits,
and family history of CVD and diabetes were also recorded.

Statistical methods
Study power was calculated using nQuery Advisor, (release
3.0). Mean changes (MCs) for risk factors were calculated
as the mean value of baseline recorded data at the end of the
study (E) subtracted from the mean value of recorded
data in both groups. The mean net change (MNC) was cal-
culated as the difference between MCs in the intervention
and control groups (MCi – MCc). The data were analysed
with SAS software using the Student’s t-test for comparing
means and the χ^2 or Fisher’s exact test.

Results
The drop-out rate was 5.3%. One patient from the interven-
tion group died (sudden cardiac death), two moved else-
where, and one discontinued the study. One of the controls
moved out of the area, and three discontinued the study.

The baseline risk factors in the intervention and control
groups are shown in Table 1. During the study, risk factors
were reduced for both groups. Clinically significant intra-
group reductions for both groups were seen in risk scores,
total cholesterol, systolic blood pressure, and exercise.
Diastolic blood pressure decreased markedly among con-
trols during the trial. Exercise levels also increased, by 39%
in the intervention group and 43% in controls. Mean net
reductions are shown in Table 2.

Despite these changes, statistically significant differences
between groups were not reached. Subgroups of individuals
with or without CVD medication did not differ either.

Discussion
GPs usually face difficulties in extrapolating the results
of large homogenous cohort studies to their own small prac-
tice populations. The study population for this trial was typi-
cally suburban and the data are thus generalisable to many
GP practices. The intervention was designed to fit in the
busy schedules of GPs. However, the typical setting is also
a cause of weakness in the study: the number of patients
remained too small to show statistically significant changes
in measured risk factor levels, possibly because of contam-
ination effect in the controls. Despite a strict randomisation
process the groups differed for some risk factors. There was
great individual variation in changes in risk factor values.

It is likely that the use of a high CVD risk level as a criteri-
on for inclusion excluded a number of patients with previous
CVD or severe long-term risk who had already been identi-
fied. These patients are probably well motivated to change
their lifestyle and have received preventive advice and med-
We were therefore dealing with moderately clustered risk factors in a perhaps more challenging population, which may partly explain our modest results. Another confounding factor is that, owing to ethical reasons, the controls received materials about risk factor reduction and this minor intervention may have decreased differences between the groups.

Many intervention studies have demonstrated decreases in CVD risk factors; however, clinically important net reductions are rare.1,4-10,12,16 In the British Family Heart Study,7,8 the coronary risk score decreased by 16% in the intervention group. In the present study, the total CVD risk score decreased in both intervention and control groups (28% versus 23%, respectively). In our study, the MNCs for both systolic blood pressure and diastolic blood pressure were small, resembling results from previous secondary prevention trials.1,3-6 Although there was a greater decrease in weight in the intervention group, the net change was quite small. These changes are in line with several previous studies.7,8,11,13,14 The MNC for total cholesterol was similar to several larger primary prevention studies7,8,11,13,14 but larger than in two secondary prevention studies.2,3 In our study, the increase in exercise levels could be owing to both groups receiving written information on lifestyle habits. Results from the only other primary care exercise intervention are not reported yet.27

A long-term follow-up of a multifactorial CVD intervention in Finland showed the decrease in cardiovascular mortality to be higher than the estimated additive result of individual risk factor effects would have been.28 In our study, small decreases in CVD risk factors were shown in both groups exposed to a minimal lifestyle intervention. Reductions in body weight and cholesterol levels and an increase in exercise levels seem the most promising aims for interventions. Preventive approaches by primary care teams should be more systematic and targeted towards high-risk patients.29 This makes sense to patient and adviser alike.30 The follow-up periods should be long enough to observe the effects on morbidity and mortality.

References

