HISTORICAL APPROACH TO DIAGNOSIS
Since the introduction of the Crosby capsule (a device used for obtaining biopsies of small bowel mucosa, necessary for the diagnosis of various small bowel diseases) in the 1970s, small intestinal biopsy has been the cornerstone of diagnosis of coeliac disease. In paediatric practice, successive position statements from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) have defined criteria for childhood diagnosis: initially based on three successive biopsies at presentation, on a gluten-free diet, and then challenge. Since 1990, the diagnosis has been dependent on a single biopsy with a clear clinical response to a gluten-free diet, supported by positive serology.1 This approach is similar to that recommended for adults2 and has been adopted by the National Institute for Health and Care Excellence (NICE).3

ADVANCES IN UNDERSTANDING
Great strides have been made in serological assessment and understanding coeliac disease pathogenesis since the 1990 guidelines were introduced. First, the non-specific gliadin antibodies used at that time were supplanted by the highly specific IgA endomysial antibody (EMA) test. Subsequently tissue transglutaminase-2 (tTG) was identified as the true autoantigen causing EMA reactivity. EMA testing depends on immunofluorescence, giving a yes–no answer dependent on operator expertise. Importantly, assay of tTG autoantibody is performed by enzyme-linked immunosorbent assay (ELISA), allowing a quantitative assessment of immune response. The second major diagnostic advance was the determination of the relevant human leukocyte antigen (HLA) types that allow presentation of gliadin/tTG complexes to T cells, thus causing the autoimmune response to tTG. Persons of the relevant human leukocyte antigen type are more likely to respond to tTG than a quarter of the UK population, making tTG testing a useful diagnostic advance. The second major advance was the determination of immune response to tTG. Persons with HLA-DQ2 and HLA-DQ8 (more than 10 times the upper normal limit) make greater than 99% of cases remain unrecognised in both adults and children.6,7 These revised criteria included the potential for diagnosis of coeliac disease without biopsy — but with a strict protocol of blood testing, in children with clear symptoms, presenting with a high titre of IgA anti-tTG autoantibodies (more than 10 times the upper limit of normal), in whom a second blood test confirmed both a positive endomysial antibody and that the patient was HLA-DQ2 or HLA-DQ8. In all other cases a biopsy would be required as previously. These guidelines have been reviewed by the coeliac working group of the British Society of Paediatric Gastroenterology, Hepatology and Nutrition (BSPGHAN) together with Coeliac UK, who have jointly published recommendations for coeliac disease diagnosis and management for UK paediatric practice.8,9 This does not encompass non-coeliac wheat intolerance.

RECOMMENDATIONS BY BSPGHAN AND COELIAC UK
BSPGHAN and Coeliac UK recommend that all children with suspected coeliac disease should have their diagnosis established by a paediatric gastroenterologist, and their follow-up under the care of a paediatric gastroenterologist or a paediatrician with a special interest in coeliac disease, with access to appropriately skilled paediatric dietetic services. There should be a low threshold for testing coeliac serology in both symptomatic children (see above) and those with associated conditions, as so many cases remain undiagnosed.

SYMPTOMATIC CHILDREN WITH POSITIVE tTG TESTING AT HIGH TITRE (X 10: ULN)
Either a small bowel biopsy may be performed as previously, or a second blood test taken for IgA EMA and HLA testing. If IgA EMA positive and the child is confirmed to be HLA-DQ2 or HLA-DQ8, then the diagnosis may be confirmed without biopsy.

Important practice points:
1. A single positive tTG or EMA blood test is insufficient for diagnosis.
"All children with suspected coeliac disease should have their diagnosis established by a paediatric gastroenterologist."

2. A gluten-free diet should not be started before the diagnosis is confirmed, even if the tTG antibody titre is high. If tTG is raised at more modest levels a biopsy will be required. For children who are IgA deficient, a biopsy will also still be required as IgG tTG antibodies do not reliably predict histology.

ASYMPTOMATIC CHILDREN WITH ASSOCIATED CONDITIONS

For asymptomatic children who have associated conditions for example, type 1 diabetes, IgA deficiency, Down’s syndrome, Williams or Turner syndromes, autoimmune thyroiditis, autoimmune liver disease, unexplained raised transaminases) or who are relatives of a coeliac patient, there should be a low threshold to consider coeliac disease. Certainly the development of symptoms or finding of iron deficiency or anaemia should prompt testing of tTG antibodies. Initial testing of HLA type in at-risk groups may allow long-term exclusion of the diagnosis (that is, the child is not DQ2 or DQ8). Such testing is likely to be carried out in secondary care. For the child who is DQ2 or DQ8 positive but has negative tTG screening, there is no indication for further testing for 3 years unless the child becomes symptomatic. For the child found to be tTG positive, referral to a paediatric gastroenterologist for consideration of biopsy is indicated. The decision about biopsy would depend on the titre of tTG antibody.

DIFFERENCES BETWEEN ADULT AND PAEDIATRIC GASTROENTEROLOGY PRACTICE

For the moment, the British Society of Gastroenterology is maintaining a biopsy-based diagnostic approach for adults with suspected coeliac disease. Thus, there are potential differences between adult and paediatric diagnostic approaches. Potential advantages of the new approach for symptomatic children include rapidity of diagnosis (as mentioned previously, there are substantially fewer paediatric than adult gastroenterologists across the UK, and paediatric endoscopy usually requires general anaesthesia and avoiding an invasive procedure that children may find unpleasant. Potential concerns about this approach include the variability between tTG assay systems in use (there are now more than 20 commercial competitors, some of which show different performance characteristics), which may make a precise cut-off indicating enteropathy less certain than previous studies have suggested. Conversely, it is also known that artefacts of biopsy handling and cutting could give significant unreliability in diagnostic histological interpretation and therefore it is possible that no universal gold standard exists. In adults, endoscopy is usually rapidly available and better tolerated, and gastroenterologists may perform follow-up endoscopy to determine histological improvement. The Coeliac Disease Guideline Development Group of NICE is currently reviewing the evidence base, with a view to updating NICE guidelines within the next 2 years. However, children diagnosed by the new ESPGHAN/BSPGHAN criteria should be viewed as having a secure diagnosis and commenced on a gluten-free diet.

Within primary care, identification of previously unrecognised childhood cases may reduce overall use of health care services, although costs may rise through tests and referral with prescription of a gluten-free diet. The higher costs of paediatric endoscopy under general anaesthetic compared with adult sedation-based procedures should provide cost savings for a blood test-based diagnostic protocol. However, both cost analysis and in-use validation of the new guidelines will be needed. Importantly, there is an ongoing pan-European study in children to examine the impact in practice of the new guidelines on diagnostic security.

Simon Murch,
Professor of Paediatrics, Warwick Medical School, Coventry (on behalf of the Coeliac Disease Working Group of BSPGHAN).

Richard Stevens,

Sarah Sleet,
Chief Executive, Coeliac UK, High Wycombe.

Provenance
Commissioned; not externally peer reviewed.

DOI: 10.3399/bjgp14X680785

REFERENCES


ADDRESS FOR CORRESPONDENCE

Simon Murch
Division of Metabolic and Vascular Health, Warwick Medical School, Clinical Sciences Building, Clifford Bridge Road, Coventry, CV2 2DX, UK.

E-mail: s.murch@warwick.ac.uk