Impact of initial medication non-adherence on use of healthcare services and sick leave: a longitudinal study in a large primary care cohort in Spain

INTRODUCTION
Non-adherence to medication is related to worsening health status and disease progression. Post-initiation medication non-adherence (discontinuation and/or suboptimal dosing) increases the use of healthcare services and costs. However, there is little evidence about initial medication non-adherence or primary non-adherence, that is, not filling the prescription for a newly-prescribed medication. Interest in initial medication non-adherence has grown recently. The prevalence of initial medication non-adherence in primary care ranges from 7% to 28%, depending on the definition of initial medication non-adherence, the medication, the country, and the population under consideration. To the authors’ knowledge, the economic consequences of initial medication non-adherence have not been explored, but they would be expected to be at least as high as for post-initiation medication non-adherence. The recent growth of real world evidence (big data) in health care offers an opportunity to explore this issue in large systems and with highly representative samples.

The aim of this study was to estimate the impact of initial medication non-adherence on the use of healthcare services, days on sick leave, and overall costs, and in specific relevant medication groups.

METHOD
This was a 3-year longitudinal register-based cohort study including all primary care patients who were prescribed a new medication in Catalonia (Spain) in 2012. The methods have been described in detail elsewhere.

Setting
The Spanish public healthcare system provides universal coverage for citizens through a public system financed by taxes and is free at the point of use, with the sole exception of medicines. The system is decentralised, thus each of the 17 Spanish Autonomous Communities controls its
How this fits in

The prevalence of initial medication non-adherence in primary care ranges from 7% to 28%. To date, only three articles have compared distinct medication groups in large representative samples and there is no published evidence on the economic impact of initial medication non-adherence. This study assessed the impact of initial medication non-adherence in primary care on the use of healthcare services and sick leave in a large representative sample of 1.7 million patients. The results suggest that initial medication non-adherence is not only highly prevalent but also has an impact on the use of services and costs. It might also imply a negative impact on health. Decision makers should consider these results and prioritise future actions to reduce initial medication non-adherence in order to improve the efficiency of primary care services.

Data source

Data were obtained from the System for the Development of Research in Primary Care database (SIDIAP) that includes information on primary care patients covered by the Catalan Health Service. Information is provided on patients’ sociodemographic and clinical data; including prescribed and dispensed medication; sociodemographic characteristics of the prescriber; and primary care centre characteristics. Information is also provided on healthcare services used and days on sick leave for all patients.

Cohort study

This study includes all patients aged >14 years old who were prescribed a new medication during 2012 that was included in 13 pharmacological subgroups. The selection of these medications was based on criteria of prevalence of use and cost to the public system, so that the 13 drugs were among the 10 most prescribed and the 10 most costly pharmacotherapeutic subgroups in primary care in Catalonia in 2014 (the most current data at the time of study design).

As in previous studies, to ensure that only newly-prescribed medicines were considered, a 3-month pre-period was established so that patients who had been prescribed a medicine from the same pharmacotherapeutic subgroup in the 3 months prior to the prescription of interest were excluded from the study. An exception was made for the subgroup who were prescribed extended-spectrum penicillin where a 1-month pre-period was set (due to the pharmacotherapeutic characteristics of these drugs, that is two prescriptions issued in two consecutive months may be indicated for non-related events).

Definition of initial medication non-adherence

Initial medication non-adherence was defined, following International Society for Pharmacoeconomics and Outcomes Research (ISPOR) recommendations, as not filling the prescription for a newly-prescribed medicine in the month of prescription or in the following month (follow-up period). Patients may have been prescribed more than one new treatment during the study period, leading to the classification of patients into three profiles of initial medication non-adherence-related behaviour:

- initially adherent (patients that fill all prescriptions);
- initially non-adherent (patients that fill no prescription); and
- partially adherent (patients that fill some initial but not all prescriptions).

Use of health services and days on sick leave

The use of services registered in the SIDIAP database includes number and date of visits to primary care professionals (GP or nurse), specialist clinician visits, and laboratory or clinical tests (nuclear medicine and diagnostic imaging). Use of medication and sick leave are also registered. Sick leave is registered in the database when the GP issues a medical certificate. Days of sick leave and use of services were obtained for the 12 months before and the 24 months after the prescription.
Cost analysis
Unit costs were searched for the use of healthcare resources and productivity losses (details available from authors on request). Healthcare costs from a public sector perspective were valued in Euros (€) from the year 2014. The prices assigned to healthcare services were gathered from the Catalan Government Official Bulletin.21,22 The exact costs of publicly covered medicines and laboratory and medical tests were obtained from the SIDIAP database. To estimate the cost to the public sector, both the minimum23 and mean24 salary in Spain in 2014 were used to calculate productivity losses from the human capital perspective.

Statistical analysis
Detailed information on data preprocessing is available from the authors on request. The differences in use of services, days on sick leave, and costs were analysed using multilevel multivariate linear regression with three levels: patient, GP, and primary care centre. Linear regression was used to analyse large datasets (>10 000 observations) with the average of the variables approximately normally distributed around the true mean.25 Robust standard errors were used to account for deviations from the normal distribution. Adjustment for costs incurred during the 12 months prior to the initial prescription was considered essential and all models were adjusted for previous use of services/costs. Other covariates were tested one at a time to select relevant covariates to adjust the multivariate model, using criteria of statistical and clinical significance. Categorical variables with $P < 0.05$ which showed differences between their values $>10\%$ of the mean use of service or cost, and continuous variables with $P < 0.05$ which showed differences $>0.5\%$ of the mean use of service or cost, for age, or 5% mean use/cost for comorbidities, were selected as adjustment variables.

Subgroup analysis
It was hypothesised that the impact on use of services and days on sick leave would differ between therapeutic groups. Considering the main indications of the 13 pharmacotherapeutic subgroups under study, medicines were classified into three subgroups: chronic medication, analgesics, and penicillin (for further details see Box 1). The same patient could be considered initially adherent in one medication subgroup analysis and initially non-adherent in another medication subgroup analysis. Analyses were performed with Stata MP (version 13.0) and MlwiN (version 2.33) using ‘runmlwin’ command.

RESULTS
A total of 1 678 941 patients from 291

Box 1. Medications included for each subgroup

Chronic medication
- Insulins and analogues for injection, long acting (ATC code: A10AE), platelet aggregation inhibitors excluding heparin (B01AC), ACE inhibitors, plain (C09AA), HMG CoA reductase inhibitors (C10AA), other antiepileptics (N03AX), selective serotonin reuptake inhibitors (N06AB), adrenergics in combination with corticosteroids or other drugs, excluding anticholinergics (R03AX), and anticholinergics (R03BB).

Analgesics
- Propionic acid derivatives (M01AE), and anilides (N02BE).

Penicillins
- Extended-spectrum penicillin (A02BC).

All medication
- Benzodiazepine derivatives (N05BA), and proton pump inhibitors (A02BC).

ATC = Anatomical Therapeutic Chemical Classification System.
primary care centres received an initial prescription for a considered medication in 2012 and fulfilled the inclusion criteria. The chronic medication group included 463 030 of these patients; the analgesics group, 1 110 664; and the penicillin group, 313 165 (Table 1). The characteristics of patients, GPs, and primary care centres overall and for each medication group are detailed in Table 2. Characteristics of patients for each initial medication non-adherence profile are available from authors on request.

Most patients initially adhered to medication (from 73% to 89%), between 9% and 19% were fully initially non-adherent patients, while 2% to 13% were partially adherent (Table 1). A total of 58 242 patients (3.5% of the sample) were initially adherent in one medication subgroup analysis and initially non-adherent in another medication subgroup analysis.

Use of healthcare services and days on sick leave

Table 3 shows the mean use of healthcare services and days of sick leave in the 2 years since the new prescription. The most frequently used services were GP
Table 4. Difference in use of healthcare services and days on sick leave (2012–2014) for each medication group for partially adherent and non-adherent patients in comparison with initially adherent patients based on adjusted multilevel regression analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Chronic, mean (95% CI)</th>
<th>Partially adherent, mean (95% CI)</th>
<th>Initially adherent, mean (95% CI)</th>
<th>Partially non-adherent, mean (95% CI)</th>
<th>Initially non-adherent, mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP visit in PCC</td>
<td>0.06a (0.02 to 0.10)</td>
<td>-0.16a (–0.19 to –0.13)</td>
<td>-0.12 (–0.29 to 0.05)</td>
<td>0.23a (0.17 to 0.29)</td>
<td>-0.13a (–0.16 to –0.10)</td>
</tr>
<tr>
<td>Home GP visit</td>
<td>0.01</td>
<td>0.03a (0.02 to 0.03)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Nurse visit in PCC</td>
<td>-0.21a (–0.25 to –0.17)</td>
<td>-0.22a (–0.25 to –0.19)</td>
<td>-0.17 (–0.40 to 0.05)</td>
<td>-0.24a (–0.28 to –0.21)</td>
<td>-0.15 (–0.19 to –0.11)</td>
</tr>
<tr>
<td>Home nurse visit</td>
<td>0.01</td>
<td>0.05a (0.03 to 0.06)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Specialist visit</td>
<td>-0.03a (–0.04 to 0.01)</td>
<td>0.01</td>
<td>-0.01 (–0.03 to 0.01)</td>
<td>-0.04a (–0.06 to 0.04)</td>
<td>-0.02a (–0.04 to 0.02)</td>
</tr>
<tr>
<td>Laboratory test</td>
<td>-0.03a (–0.04 to 0.02)</td>
<td>-0.10a (–0.13 to 0.08)</td>
<td>-0.10a (–0.13 to 0.08)</td>
<td>-0.10a (–0.14 to 0.01)</td>
<td>-0.09a (–0.12 to 0.01)</td>
</tr>
<tr>
<td>Nuclear medicine test</td>
<td>0.01</td>
<td>-0.01 (–0.02 to 0.00)</td>
<td>-0.001 (–0.002 to 0.001)</td>
<td>-0.001 (–0.002 to 0.001)</td>
<td>-0.001 (–0.002 to 0.001)</td>
</tr>
<tr>
<td>Diabetic medicine test</td>
<td>0.04a (0.05 to 0.07)</td>
<td>0.05a (0.04 to 0.06)</td>
<td>0.05a (0.04 to 0.06)</td>
<td>-0.001 (–0.002 to 0.001)</td>
<td>-0.001 (–0.002 to 0.001)</td>
</tr>
<tr>
<td>Days on sick leave</td>
<td>3.78</td>
<td>2.49a (2.26 to 2.73)</td>
<td>1.83 (1.54 to 2.12)</td>
<td>3.81a (3.44 to 4.12)</td>
<td>2.71a (2.42 to 2.99)</td>
</tr>
</tbody>
</table>

Statistically significant differences (95%) Medication prescribed by GP in the primary care public health system, PCC = primary care centre.

Differences in costs

Figure 1 shows the 2-year adjusted mean differences in costs for each medication group in initially adherent, partially adherent, and initially non-adherent patients in Catalonia (Spain) in 2012. The multilevel adjusted model for mean differences in costs is shown in Table 5. The multilevel unadjusted model is available from authors on request.

With few exceptions, initially adherent patients generated higher medical and drug-related costs than non-adherent and partially adherent patients. On the other hand, in all cases, initially adherent patients generated lower costs than non-adherent and partially adherent patients in terms of productivity losses. When total costs were considered, higher costs in use of healthcare services and drugs were offset by lower productivity losses in all scenarios, with the exception of chronic conditions. Patients who initially adhered to chronic medication incurred the highest total costs but only when the minimum salary for sick leave was used to calculate their total costs (Figure 1).
DISCUSSION

Summary

The results of the study show that, overall, initially non-adherent patients made less use of: GP and nurse consultations at a primary care centre, medicines, and laboratory and nuclear medicine tests. However, they made more use of home GP and nurse consultations, which are more expensive, and had more days on sick leave. Partially adherent patients used fewer medicines, had fewer nurse consultations at primary care centres, and required fewer laboratory tests than initially adherent patients, but made greater use of GP and specialist consultations, and diagnostic imaging tests, and had more days on sick leave.

When services and sick leave were translated into costs, it was observed that initially non-adherent patients generate higher costs for the government than adherent patients. The only exceptions were patients who did not initiate a drug for a chronic disease, although this was only true if the minimum salary in Spain was assumed for cost of sick leave calculation.

It is important to note that costs for chronic diseases were only evaluated in the short-term (2 years). With exceptions, such as depression, chronic diseases have the greatest impact on health and use of services in the long term and a peak in demand for healthcare services at the moment of diagnosis.26 Given the volume of patients who are initially non-adherent to medication and the effect of applying the mean impact of initial medication non-adherence on costs in all medication analysis, the range of the total economic impact for the government in Catalonia could be between €8 million (minimum salary for sick leave) and almost €89 million (mean salary for sick leave).
Strengths and limitations

This is the first study to assess the economic consequences of initial medication non-adherence and among the first to estimate the economic consequences of a medication non-adherence event in almost an entire population. Big data provide high representativeness, which increases the validity of the results.

Regarding limitations in the database registries, it was not possible to assess differences in hospital admissions and interventions between adherent and non-adherent patients. These costs have been shown to be higher in patients who display post-initiation medication non-adherence.6,7 Furthermore, it was not possible to evaluate the clinical impact of non-adherence and, as mentioned above, only the short-term impact of non-adherence to chronic medication could be evaluated. In the future, clinical indicators should be searched in the database for specific diseases and economic models constructed to evaluate the long-term consequences of initial medication non-adherence.

Another database limitation is that emergency primary care centre visits cannot be distinguished from regular visits. However, as stated above, home visits are usually emergency visits so could indicate the impact of initial medication non-adherence on emergency visits.

Until July 2014, employees were allowed to take up to 3 consecutive days sick leave before they had to take a medical certificate to their employer. Although patients could get a medical certificate for short sick leave (27% of database-registered sick leave was for no more than 3 days), it is possible that productivity losses were underestimated. Furthermore, there was no information about the reason for the sick leave, therefore it is not possible to conclude that it was linked to the treatment that was not initiated.

Primary care electronic databases may contain some errors or missing data in their registries. Missing data were dealt with by using imputation techniques. Thus, 3% of patients received a new prescription without registration of the GP consultation. These could be due to phone consultations, prescriptions made out to the person accompanying the patient (typically the partner), or prescriptions issued during a nurse visit. To minimise bias, an extra GP consultation was imputed to these patients. Finally, it is not certain that patients who filled a prescription initiated the treatment or that patients who did not fill the prescription are non-adherent (for

| Table 5. Difference in costs (in €, 2012–2014) for each medication group for partially adherent and non-adherent patients in comparison with initially adherent patients based on adjusted multilevel regression analysis |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Partially adherent | Initially adherent | Partially non-adherent | Initially non-adherent | Partially adherent | Initially adherent | Partially non-adherent | Initially non-adherent |
| Cost, € | Chronic, mean (95% CI) | Analgesics, mean (95% CI) | Penicillins, mean (95% CI) | Penicillins, mean (95% CI) | Chronic, mean (95% CI) | Analgesics, mean (95% CI) | Penicillins, mean (95% CI) | Penicillins, mean (95% CI) |
| Medical cost | –2.02 (–4.16 to 0.12) | –10.54a (–12.94 to –8.14) | –16.35a (–21.82 to –10.88) | –34.51a (–40.84 to –28.18) | 8.07a (3.60 to 12.57) | –12.54a (–14.82 to –10.26) | –12.51 (–19.17 to –5.84) | –6.84a (–13.42 to –0.27) |
| Sick leave cost (minimum salary) | 80.90 (73.54 to 88.26) | 52.99a (47.68 to 58.31) | 39.97a (11.87 to 68.05) | 44.30a (29.90 to 58.70) | 80.62a (70.00 to 91.26) | 57.91a (51.81 to 64.02) | 67.20a (51.33 to 83.08) | 85.20a (72.66 to 97.74) |
| Sick leave cost (mean salary) | 244.89a (222.61 to 267.17) | 160.42a (144.31 to 176.51) | 120.96a (105.29 to 136.62) | 134.28a (119.01 to 150.55) | 244.05a (221.88 to 267.21) | 203.28a (185.81 to 220.77) | 239.88a (211.35 to 268.42) | 257.89a (231.96 to 283.81) |
| Total cost (minimum salary) | 34.56a (25.48 to 43.63) | 2.58 (–3.82 to 8.98) | –49.55a (–85.90 to –13.20) | –61.76a (–79.65 to –43.86) | 65.21a (–36.42 to 56.15) | –4.89 (–29.56 to 28.78) | 36.86a (13.43 to 50.29) | 56.86a (13.05 to 99.67) |
| Total cost (mean salary) | 242.12a (218.33 to 265.91) | 164.71a (147.70 to 181.71) | 10.74 (–3.70 to 24.12) | 33.88a (0.56 to 67.20) | 164.71a (147.70 to 181.71) | 144.49a (128.60 to 160.38) | 182.60a (162.60 to 202.60) | 229.99a (182.60 to 277.37) |

Statistically significant differences. PCG = primary care centre.
example, they may have used the medicine cabinet effect, accessing remaining pills at home from previous use of over-the-counter medicines. However, this is very unlikely for most of the drugs evaluated (penicillin or chronic).

Comparison with existing literature
To the best of the authors’ knowledge, this is the first study to evaluate the impact of initial medication non-adherence on the use of healthcare services and days on sick leave. Studies examining the economic consequences of post-initiation medication non-adherence also reported adherent patients making greater use of services than non-adherent patients in some pharmacologic groups. On the one hand, this could be due to the need for follow-up visits for the assessment of treatment effectiveness in adherent patients and, in some cases, to deal with changes in treatment and/or side-effects. On the other hand, non-adherent patients might miss appointments because they did not take the medication. Previous post-initiation medication non-adherence studies also showed how higher drug costs were offset by savings in other medical services, while higher absenteeism was also observed in non-adherent patients.

In the framework of health economics, health consequences need to be taken into account when deciding whether improving initial medication adherence is an efficient strategy in primary care. Home visits are mainly emergencies. The greater use of home visits by non-adherent patients, together with longer periods of sick leave, could indicate that these patients have worse health outcomes as a consequence of non-adherence. This is supported by the fact that more home visits are observed specifically in patients prescribed penicillins and analgesics, which are prescribed for diseases with shorter-term impact on health than chronic diseases.

In this regard, post-initiation medication non-adherence seems highly influenced by modifiable factors and initial medication non-adherence seems to be similar.

Implications for research and practice
Initial medication non-adherence seems to have an impact on productivity losses and costs, and the data suggest that it could also have a negative impact on health because this behaviour is associated with greater use of home health visits. Savings in use of medicines are offset by increased use of other services and more days off work. It is recommended that future research focuses on designing and developing interventions to reduce the prevalence of initial medication non-adherence in primary care.

Future studies also need to confirm whether there are negative consequences of initial medication non-adherence on health, and evaluate the long-term consequences in terms of costs and health of initial medication non-adherence in chronic diseases. Specific policies and interventions addressed to reduce non-adherence should be implemented in Spanish primary care to reduce the impact of this behaviour on the system.

Funding
This research was funded by the project ‘The problem of non-initiation of pharmacological treatment: mixed-methods evaluation’ (PI14/00052) included in the Spanish National Plan for R&D cofounded by Institute of Health Carlos III (ISCIII) and the European Fund for Regional Development (FEDER). Maria Rubio-Valera received a research contract from the Institute of Health Carlos III (Red RD12/0005/008).

Ethical approval
Approval for the study was obtained from the authors’ institutions (P14/140; PIC-111-14).

Provenance
Freely submitted; externally peer reviewed.

Competing interests
The authors have declared no competing interests.

Acknowledgements
The authors thank Mr Christopher Charlton from University of Bristol for his help in command ‘runmlwin’ configuration to develop multilevel linear regression analysis and Mr Stephen Kelly for his editorial help.

Discuss this article
Contribute and read comments about this article: bjgp.org/letters
REFERENCES

