Primary medical care continuity and patient mortality: a systematic review

Background
A 2018 review into continuity of care with doctors in primary and secondary care concluded that mortality rates are lower with higher continuity of care.

Aim
This association was studied further to elucidate its strength and how causative mechanisms may work, specifically in the field of primary medical care.

Design and setting
Systematic review of studies published in English or French from database and source inception to July 2019.

Method
Original empirical quantitative studies of any design were included, from MEDLINE, Embase, PsycINFO, OpenGrey, and the library catalogue of the New York Academy of Medicine for unpublished studies. Selected studies included patients who were seen wholly or mostly in primary care settings, and quantifiable measures of continuity and mortality.

Results
Thirteen quantitative studies were identified that included either cross-sectional or retrospective cohorts with variable periods of follow-up. Twelve of these measured the effect on all-cause mortality; a statistically significant protective association for coronary heart disease mortality. Improved clinical responsibility, physician knowledge, and patient trust were suggested as causative mechanisms, although these were not investigated.

Conclusion
This review adds reduced mortality to the demonstrated benefits of there being better continuity in primary care for patients. Some patients may benefit more than others. Further studies should seek to elucidate mechanisms and those patients who are likely to benefit most. Despite mounting evidence of its broad benefit to patients, relationship continuity in primary care is in decline — decisive action is required from policymakers and practitioners to counter this.

Keywords
continuity of patient care; mortality; primary health care; systematic review.

INTRODUCTION
Continuity of care is a core feature of general practice and defined as the care of individuals (rather than populations) over time. There are three main types of continuity:

1. relationship (or personal) — implies a trusting therapeutic relationship between the individual patient and at least one caring clinician;
2. informational — the availability of records to all involved in the care of an individual; and
3. management — coordination and communication between all groups involved in care.

Starfield et al considered relationship continuity to be part of primary care’s effect on improving outcomes, including patient satisfaction, and lower hospitalisation and emergency-room use. Relationship continuity, leading to patient trust and improved adherence to advice, is a suggested mechanism for improved care effectiveness. Measuring such relationships can be complex and needs approaches with patients and clinicians; however, counting contacts with the same person is much simpler because without such contacts a relationship cannot occur.

Such use-based measurements of contacts can be called ‘concentration of care’ — namely, measuring to what extent patient contacts are concentrated on the same professional. They may appear synonymous with relationship continuity, although the relationship is implied rather than assessed.

Care concentration supports informational and management continuity in primary care, but concentration of care to support relationship continuity in primary care is declining in some countries; it is difficult for a patient to see their chosen doctor in a timely manner and waits may cause diagnostic delay. Although patients who are young and fit may neither want, nor need, to see the same doctor, older patients and those with multiple conditions often do, as such, although relationship continuity in primary care has demonstrated care advantages, evidence of better health outcomes, including decreased mortality, is needed to justify robust policies to support it.

A recent review of continuity with doctors in both primary and secondary care found a protective association against mortality. This association has been studied further by the authors, specifically in primary care, to elucidate its strength and how any causation may work in order to focus future research. Their objectives were to:

R Baker, MD, FRCGP, professor emeritus;
MJ Bankart, PhD, honorary associate professor in medical statistics, Department of Health Sciences, University of Leicester, Leicester, UK.
GK Freeman, MD, FRCP, emeritus professor of general practice, Department of Primary Care and Public Health, Imperial College London, London, UK.
JL Haggerty, PhD, McGill research chair in family at community medicine at St Mary’s, Department of Family Medicine, McGill University, Montreal, Canada.
KH Nockels, MA (Hons), Dip Lib, academic librarian (medicine), University Library, University of Leicester, Leicester, UK.

Address for correspondence
Richard Baker, Department of Health Sciences, College of Life Sciences, University of Leicester, Centre for Medicine, University Road, Leicester LE1 7RH, UK.
Email: rb14@le.ac.uk
©British Journal of General Practice
This is the full-length article (published online 11 Aug 2020) of an abridged version published in print. Cite this version as: Br J Gen Pract 2020; DOI: https://doi.org/10.3399/bjgp20X712289
How this fits in

In 2018, a review of continuity of care was conducted with doctors in primary and secondary care; it concluded that mortality rates are lower with higher continuity. The study presented here not only confirms the association in the context of primary medical care, but also shows that it is variable and, indeed, not always present, possibly because the presumed benefits of continuity on mortality differ among different patient groups. The 13 studies reviewed say little about the mechanisms by which continuity may achieve lower mortality or why some patients may benefit more than others, and further research should focus on how, and when, continuity helps people, and how to achieve it in today’s challenging context. As there is an ongoing decline in continuity, despite evidence of its benefits on mortality and other outcomes, policy initiatives and resources must enable and incentivise services that help patients to achieve it.

METHOD

Protocol

Prior to commencing this review, a study protocol was developed and registered with PROSPERO (reference number: CRD42017055578).

Definition

The following operational definition of primary care that focused on medical practitioners was added to Baker et al’s published protocol:16 "Care provided by physicians specifically trained for, and skilled in, comprehensive first contact and continuing care for persons with any undiagnosed sign, symptom, or health concern."3

Eligibility criteria

Included studies were those that:

- were original empirical studies of any quantitative design;
- were published in English or French from the inception of the databases or sources used, until July 2019; and
- used quantifiable measures of both continuity and mortality in patients seen wholly, or mostly, in primary care settings.

Searches

MEDLINE, Embase, and PsycINFO were searched for potentially relevant peer-reviewed articles, along with OpenGrey and the library catalogue of the New York Academy of Medicine for unpublished studies; the search strategy is outlined in Supplementary Box S1. One reviewer undertook the searches, developing the strategy in MEDLINE and adapting it for Embase, PsycINFO, and the grey literature. Citations in four relevant reviews of continuity in primary care4–6 and in the 13 studies included in this review were also searched.

Data collection

After piloting the data extraction form, three reviewers undertook dual, independent
data extraction of each study. Two reviewers were assigned randomly to each study; as two articles were co-authored by one of the researchers, they were reviewed by the two researchers who had not been involved in those studies. Data were extracted independently and differences resolved through three-way discussion. Study authors were contacted for additional information if necessary; this included clarification from the health professionals involved.

The researchers recorded:

- authors;
- publication year;
- country;
- design;
- primary medical care setting;
- numbers and types of patients;
- numbers of deaths;
- measure and type of continuity;
- covariates in statistical models (including other continuity variables);
- statistical model [for example, linear or logistic] and whether the outcome was transformed;
- continuity beta coefficient and variability estimate;
- measure of mortality — whether overall or disease specific; and
- the measurement periods for continuity and related monitoring periods for mortality, the raw measure, and translation into a hazards ratio, if relevant.

The reviewers captured any mechanisms proposed by the study authors about how continuity might impact mortality — whether hypothesised at the design stage or in discussion of observed results — and posited alternate explanations, if relevant.

Risk of bias within included studies

The 2011 version of the Mixed Methods Appraisal Tool (MMAT) was used,17 this allowed for the appraisal of randomised, non-randomised, quantitative descriptive, qualitative, and mixed-methods studies. It has been evaluated18 and includes three items for mixed-methods studies and four items for each of the other study types. Each item is rated categorically [yes, no, unclear], and the number ranked ‘yes’ enables an overall score to be reached. The reviewers’ reasons for ratings, including strengths and weaknesses of studies and their assessment of the measures of continuity employed, were also recorded.

Synthesis of results

It was initially planned that a meta-analysis would be conducted to better assess the strength of the observed positive associations of continuity and mortality. Study authors were directly approached for additional and more-precise data. Some went to great trouble to help but, ultimately, meta-analysis was found to be impossible because of differing outcome measures, continuity measures, timescales, and issues related to non-linear results curves (Supplementary Box S2).

Risk of bias across studies

Publication bias towards favourable associations between primary care continuity and mortality were anticipated; the grey literature were searched to try to mitigate this but nothing relevant was found.

RESULTS

Study selection and characteristics

In total, 2785 articles were assessed for relevance and 13, conducted by 10 research teams, were included (Figure 1).19–31 These were carried out in the US (n = 3),19,23,24 Canada (n = 3),25,26,28 England (n = 2),29,30 Austria (n = 1),31 France (n = 1),21 Israel (n = 1),26 South Korea (n = 1),25 and the Netherlands (n = 1) (Table 1). All measured relationship continuity from care-use patterns or by patient report. None specifically addressed informational or management continuity. All practitioners were physicians except in two US studies, which included some nurse practitioners and physicians’ assistants.19,26

In two studies,29,30 the unit of analysis was the entire primary care practice population. Four studies19,20,23,27 included only older patients (aged ≥60 or >65 years), and one of these20 was restricted to people with diabetes (Table 1). Seven studies selected specific populations: five selected patients with chronic conditions (diabetes, hypertension, hypercholesterolaemia, or heart failure),22,25,26,28,31 one selected military veterans,24 and one selected salaried workers with ≥2 consultations.21

Data-collection periods ranged widely, from a few weeks22 or months28 to 17 years (Table 1).27 Continuity data were collected before a cut-off point, followed by mortality measurement in five studies22,24,25,27,28 while, in the remainder, continuity scores were calculated up to the time of death.

A quantitative analysis was not feasible because the continuity data could not be incorporated into a meta-analysis (Supplementary Table S1 and Supplementary Box S2).
<table>
<thead>
<tr>
<th>Study</th>
<th>Country and population details</th>
<th>Population details</th>
<th>n</th>
<th>Study design</th>
<th>Follow-up sequence</th>
<th>Designed for CoC assessment?</th>
<th>Y/N</th>
<th>Data sources(s)</th>
<th>CoC measure</th>
<th>All-cause or disease-specific measure</th>
<th>Mortality measure mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolinsky et al (2010)</td>
<td>US, primary care</td>
<td>Aged >70 years</td>
<td>5457</td>
<td>Single retrospective cohort</td>
<td>12 years CoC up to 12 years with mortality</td>
<td>N</td>
<td>Single interview with documentary follow-up</td>
<td>No more than 8 months between visits to the same primary care practitioner</td>
<td>All-cause Medicare files</td>
<td>MIAC</td>
<td></td>
</tr>
<tr>
<td>Worrall and Knight (2011)</td>
<td>Canada (Newfoundland, family practice)</td>
<td>Aged ≥65 years with diabetes</td>
<td>350</td>
<td>Single retrospective cohort</td>
<td>3 years 3-year CoC with 3-year mortality</td>
<td>N</td>
<td>Provincial administrative databases</td>
<td>UPC</td>
<td>All-cause Mortality surveillance system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leleu and Minville (2013)</td>
<td>France, primary care</td>
<td>Salaried workers with ≥2 consultations, national sample</td>
<td>325 742</td>
<td>Single retrospective cohort</td>
<td>3 years 6-month CoC with 3-year mortality</td>
<td>N</td>
<td>National Health Insurance database records</td>
<td>COCI</td>
<td>All-cause National Health Insurance database</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McAlister et al (2013)</td>
<td>Canada (Alberta), primary care</td>
<td>Aged ≥20 years with a acute admission with first-time diagnosis of heart failure</td>
<td>39 249</td>
<td>Single retrospective cohort</td>
<td>30 days 14-day + 1-year CoC then 30-day mortality</td>
<td>N</td>
<td>Alberta Health Administration databases</td>
<td>All-cause Alberta Health Care Insurance Plan Registry</td>
<td>All-cause Alberta Health Care Insurance Plan Registry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentler et al (2014)</td>
<td>US, primary care</td>
<td>Aged ≥65 years, Medicare patients</td>
<td>12 19</td>
<td>Single cohort</td>
<td>5 years 1-year CoC with 5-year mortality</td>
<td>Y</td>
<td>Mailed questionnaire and record-based follow-up</td>
<td>Multiple measures</td>
<td>All-cause Medicare files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelson et al (2014)</td>
<td>US, primary care</td>
<td>Veterans with ≥2 consultations</td>
<td>4.3 million</td>
<td>Single retrospective cohort</td>
<td>1 year 1-year CoC then 1-year mortality</td>
<td>N</td>
<td>VHA records</td>
<td>UPC</td>
<td>All-cause VHA files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shin et al (2014)</td>
<td>South Korea, primary care</td>
<td>Hypertension, diabetes, or hypercholesterolaemia</td>
<td>47 433</td>
<td>Single retrospective cohort</td>
<td>5 years 2-year CoC then 5-year mortality</td>
<td>N</td>
<td>Korean National Health Insurance enrols</td>
<td>UPC</td>
<td>All-cause and CVD National death registry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lustman et al (2016)</td>
<td>Israel, primary care</td>
<td>Aged 40–75 years, type 2 diabetes</td>
<td>23 679</td>
<td>Single retrospective cohort</td>
<td>2 years 1+1-year CoC with 1+1-year mortality</td>
<td>N</td>
<td>HMO records database</td>
<td>UPC</td>
<td>All-cause HMO records database</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maarsingh et al (2016)</td>
<td>The Netherlands, general practice</td>
<td>Aged ≥60 years</td>
<td>17 12</td>
<td>Single retrospective cohort</td>
<td>17 years 7–17-year CoC then 1–14-year mortality</td>
<td>N</td>
<td>Triennial home interviews</td>
<td>Herfindahl–Hirschman Index</td>
<td>All-cause Linked municipal registers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... continued
<table>
<thead>
<tr>
<th>Study</th>
<th>Population details</th>
<th>Country and setting</th>
<th>Study design</th>
<th>Follow-up sequence</th>
<th>CoC assessment</th>
<th>Data source(s)</th>
<th>Follow-up</th>
<th>CoC measure</th>
<th>All-cause or disease- specific mortality</th>
<th>Study findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>McAlister et al (2016)</td>
<td>Canada (Alberta), Aged >20 years, new admission or ED attendance</td>
<td>Alberta</td>
<td>Retrospective</td>
<td>6 months, 1-year + 1-month</td>
<td>N</td>
<td>Alberta Health Insurance Plan</td>
<td>Y/N</td>
<td>Alberta Health Care Registry</td>
<td>All-cause mortality</td>
<td>CoC then mortality means sequential measurement periods, hypothesized to statistically significant CHD mortality rates, but not for all-cause, CHD, or stroke mortality rates (data not shown). Both of these studies, conducted in England, used a patient-reported measure of continuity.</td>
</tr>
<tr>
<td>Geroldinger et al (2018)</td>
<td>Austria, all medical disciplines and general practice</td>
<td>Austria</td>
<td>Retrospective</td>
<td>4 years</td>
<td>N</td>
<td>Austrian social security database</td>
<td>Y/N</td>
<td>Austrian social security database</td>
<td>All-cause mortality</td>
<td>CoC then mortality means sequential measurement periods, hypothesized to statistically significant CHD mortality rates, but not for all-cause, CHD, or stroke mortality rates (data not shown). Both of these studies, conducted in England, used a patient-reported measure of continuity.</td>
</tr>
</tbody>
</table>

Risk of bias within studies

All 13 studies were of quantitative observational design and either cross-sectional or with variable periods of follow-up. Assessed by MMAT, seven studies achieved the maximum score of compliance with four assessment items, 19-21,25,26,28,31 three studies scored 3,26,29,30 and another three scored 2 (Table 2).22,23,27 In the subjective assessments, the most common weakness was the measure of continuity, for example, use of proportions of consultations with a specific doctor (concentration of care) was used to indicate relationship continuity.

Association between continuity and mortality

Twelve studies measured all-cause mortality, of which nine found a statistically significant protective effect of greater continuity (Table 3).19-22,24-26,27,28 Two studies did not find a statistically significant effect29,31 and, in one, the effect varied from increased to decreased mortality depending on the measure of continuity used.23

Of the two studies that included the entire primary care population, one found a protective association for coronary heart disease (CHD) mortality rates,29 and the other found a protective association for cancer and chronic obstructive pulmonary disease mortality rates, but not for all-cause, CHD, or stroke mortality rates (data not shown).29 Both of these studies, conducted in England, used a patient-reported measure of continuity.

Of the 11 studies that measured mortality and continuity in populations selected according to morbidity or age, 10 found a protective association of better continuity against all-cause mortality;19-22,24-28,31 this was not the case with all measures of continuity in one study (Table 3).23 Overall, the study findings suggest that relationship continuity has a variable, but generally protective, effect on mortality, which has greater magnitude for some patients. Where the data specified several levels of continuity, the dose–response curve varied: in one study,19 there was a benefit for some continuity versus no continuity, but no further benefit for extra increases in continuity (non-linear association) (data not shown). The study by Maarsingh et al27 found a progressive increase in benefit for additional increases in continuity (linear association) (data not shown). The absence of benefit in Geroldinger et al’s study, which was restricted to people with diabetes,29 may be due to the very high levels of primary care continuity reported in the study, with 61.9% of patients having only...
Table 2. Assessment of risk of bias using the MMAT17.a

<table>
<thead>
<tr>
<th>Selected study populations</th>
<th>Is the sampling strategy relevant to address the quantitative research question?</th>
<th>Is the sample representative of the population under study?</th>
<th>Are measurements appropriate (clear origin, or validity known, or standard instrument)?</th>
<th>Is there an acceptable response rate/ follow-up (≥60%)?</th>
<th>Overall score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolinsky et al (2010)19</td>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>Worral and Knight (2011)20</td>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>Leleu and Minvielle (2013)21</td>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>McAlister et al (2013)22</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Bentler et al (2014)23</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Nelson et al (2014)24</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Shin et al (2014)25</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

...continued

a single GP and therefore a Continuity of Care Index of 1.0.

Reported mechanisms of any association

Statements pointing to potential mechanisms by which continuity might influence mortality were identified in seven studies,19,21,23,25,27,28,31 three studies made no suggestions,20,21,26 and three were unclear (Box 1).24,29,30 The mortality reduction was attributed to greater physician knowledge of the patient,23,25,28 increased patient trust enabling improved adherence to medical advice,19,21,23 and to enhanced clinical responsibility being taken when the same physician offers care.19 Authors of two studies suggested confounding mechanisms: Lustman et al suggested that...
very ill patients choosing to see the most readily available doctor could compromise continuity, while Bentler et al indicated that higher mortality related to higher concentration of care among patients with more-serious illness. Although no study explicitly stated that continuity might better protect against mortality in older populations or those with greater morbidity, most studies focused on such populations.

DISCUSSION

Summary

No experimental studies were found. Nearly all the observational studies in the review suggested that relationship continuity was associated with a protective effect on mortality. However, as effect sizes were modest and variable, and a variety of designs and continuity measures were used, it is not possible to say whether the influence of continuity was greater in older populations or those with greater morbidity. The choice of different explanatory variables to include in regression models and different levels of analysis (patient, practice, or larger service unit) may also explain some of the variation between studies — such as, for example, the protective association for CHD that was found in Honeyford et al’s study, but not in that conducted by Levene et al.

Strengths and limitations

This was a comprehensive, protocol-based search that focused specifically on primary care populations. However, there are some limitations: it was not possible to undertake a meta-analysis; publication bias cannot be

Table 2 continued. Assessment of risk of bias using the MMAT

<table>
<thead>
<tr>
<th>Study</th>
<th>Is the sampling strategy relevant to address the quantitative research question?</th>
<th>Is the sample representative of the population under study?</th>
<th>Are measurements appropriate (clear origin, or validity known, or standard instrument)?</th>
<th>Is there an acceptable response rate/ follow-up (≥60%)?</th>
<th>Overall score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lustman et al (2016)</td>
<td>No</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>Maarsingh et al (2016)</td>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>McAlister et al (2016)</td>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>Geroldinger et al (2018)</td>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>Levene et al (2012)</td>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Honeyford et al (2013)</td>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3</td>
</tr>
</tbody>
</table>
| *All the studies were of quantitative descriptive design and were assessed against the MMAT question items for that design. MMAT = Mixed Methods Appraisal Tool. UPC = Usual Provider Continuity Index.*
ruled out; and continuity measures varied, with most being record based. Finally, a range of different settings and follow-up periods were also used, which were compatible with (but did not confirm) a wide-ranging effect. Since almost all the health professionals in the included studies were physicians, the authors are unable to comment on the effects of continuity with non-physician primary care practitioners.

Comparison with existing literature

The findings of this review are consistent with much of the literature on the benefits of continuity; however, exceptions to this include reports of delayed diagnosis of significant conditions such as cancer.32,33 One study also noted that the care of patients seen by a single physician tended to gain lower professional rating scores,34 and another four failed to find associations between continuity and favourable outcomes.35–38 Such wide-ranging results suggest that a simple view that ‘continuity is good for patients’ may mask more complexity, for example, benefits for many patients may be reduced overall by disadvantages for a few.

No study in this review directly investigated the mechanisms to explain an association between continuity and mortality, and reverse causality remains possible — that is, that patients with a greater risk of death are less likely to see the same physician. A typical model was that relationship continuity increases physicians’ personal knowledge of the patient, in turn leading to more appropriate treatment and improved patient trust. This may increase both disclosure of relevant personal clinical details and a willingness to follow medical advice.39 Pereira Gray et al argued that:

'... a “personal doctor” with accumulating knowledge of the patient’s history, values, hopes and fears will provide better care than a similarly qualified doctor who lacks such knowledge ...'.

If accumulated knowledge is important, then continuity measurement needs to allow for this; in particular, seeing the same person does not equate with knowing them well, although the two may be correlated.23 Empathy, for example, is a feature of the relationship and recent studies have shown that greater empathy is associated with improved outcomes.41,42 As such, indices based on clinical contact records (concentration of care) are, at best, proxy measures of the relationship in relationship continuity. Direct patient assessments

<table>
<thead>
<tr>
<th>Table 3. Summary of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
</tr>
<tr>
<td>Selected populations</td>
</tr>
<tr>
<td>Wolinsky et al (2010)19</td>
</tr>
<tr>
<td>Worrall and Knight (2011)20</td>
</tr>
<tr>
<td>Leleu and Minvielle (2013)21</td>
</tr>
<tr>
<td>McAlister et al (2013)22</td>
</tr>
<tr>
<td>HR 0.77 (0.70 to 0.86)_NC for all visits with familiar physician</td>
</tr>
<tr>
<td>Bentler et al (2014)23</td>
</tr>
<tr>
<td>Nelson et al (2014)24</td>
</tr>
<tr>
<td>Shin et al (2014)25</td>
</tr>
<tr>
<td>Lustman et al (2014)26</td>
</tr>
<tr>
<td>Maansingh et al (2016)27</td>
</tr>
<tr>
<td>McAlister et al (2016)28</td>
</tr>
<tr>
<td>HR 1.00 for no visits</td>
</tr>
<tr>
<td>HR 0.98 (0.80 to 1.20) for visits with unfamiliar physician only^</td>
</tr>
<tr>
<td>Geroldinger et al (2018)29</td>
</tr>
<tr>
<td>Entire primary care population</td>
</tr>
<tr>
<td>Levene et al (2012)30</td>
</tr>
<tr>
<td>Honeyford et al (2013)31</td>
</tr>
</tbody>
</table>

^Additional data provided by study authors. CHD = coronary heart disease. COCI = Continuity of Care Index. HR = hazard ratio. IRR = incidence rate ratio. OR = odds ratio.

British Journal of General Practice, September 2020 | e607
Honeyford et al (2013)\(^ {30} \) In a referenced conceptual model, the authors suggest that quality primary health care (access with sustained patient relationships) helps both the patient and provider understand when outpatient and home care can substitute for hospitalization.\(^ {22} \)

Levene et al (2012)\(^ {29} \) ‘Starfield et al identified mechanisms potentially accounting for the beneficial impact of primary care on population health, including greater access to needed services, better quality of care, greater focus on prevention, earlier disease management, and the cumulative effect, with a holistic focus, of greater continuity and comprehensiveness.’ \(^ {29} \)

Entire primary care population

Levene et al (2012)\(^ {29} \) ‘Starfield et al identified mechanisms potentially accounting for the beneficial impact of primary care on population health, including greater access to needed services, better quality of care, greater focus on prevention, earlier disease management, and the cumulative effect, with a holistic focus, of greater continuity and comprehensiveness.’ \(^ {29} \)

Honeyford et al (2013)\(^ {30} \) In a referenced conceptual model, the authors suggest that quality primary health care (access with sustained patient relationships and/or interventions) can modify the relationship between risk factors and probability of death.

- trust, with good communication;
- patients not having to repeat their story;
- feeling safe; and
- ease of navigating the health system.

These reflect mechanisms suggested by authors of articles included in the present review and can all be included in the concept of agency theory.\(^ {47} \) Patients consult health professionals for meaning and understanding, knowledge, skills, and therapies; the clinician is their agent and shares the patient’s world view, while adding appropriate and necessary value. Seeing the same clinician potentially enhances good agency, but a clinician seeing the same

Box 1. Suggested mechanisms by which any type of continuity might influence mortality

<table>
<thead>
<tr>
<th>Study</th>
<th>Suggested mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected populations</td>
<td></td>
</tr>
<tr>
<td>Wolinsky et al (2013)(^ {21})</td>
<td>Continuity is defined as ‘an ongoing relationship with a particular [primary care] physician in the outpatient setting with sufficient frequency for that physician to assume primary responsibility for both the patient’s basic health care needs and her overall disease and care management’ (^ {21}). Continuity is expected to result in ‘improved doctor–patient relationships, enhanced physician knowledge of the patient, greater rapport and disclosure, increased compliance, reduced hospitalization rates, increased patient and physician satisfaction, reductions in disability levels, costs, and missed appointments, and improved problem recognition and management.’ (^ {21})</td>
</tr>
<tr>
<td>Worrall and Knight (2011)(^ {29})</td>
<td>None.</td>
</tr>
<tr>
<td>Leleu and Minvielle (2013)(^ {21})</td>
<td>Consultations with the same primary care practitioner can lead to a better understanding of patients’ health needs, better management, and builds up a relationship of trust.</td>
</tr>
<tr>
<td>McAlister et al (2013)(^ {22})</td>
<td>None.</td>
</tr>
<tr>
<td>Bentler et al (2014)(^ {21})</td>
<td>‘Longitudinal continuity: … [provides] a chance for interpersonal continuity to develop, … [which] means that knowledge, trust, and respect have developed … over time allowing for better interaction and communication. Within interpersonal continuity, there are both instrumental [provider knowledge about the patient] and affective [mode of provider behaviour toward the patient] continuity. … that contribute to a good patient-provider relationship. […] establishing a caring, trusting bond as part of the patient-provider relationship helps both the patient and provider understand when outpatient and home care can substitute for hospitalization.’ (^ {22})</td>
</tr>
<tr>
<td>Shin et al (2014)(^ {23})</td>
<td>‘A physician who attends the same patient regularly is likely to have better knowledge of him or her, to recognize problems earlier, and to provide higher quality of care. Furthermore, patients who have continuity with the same physician are more likely to adopt better self-management behaviours and to increase adherence to medication recommendations, probably because of greater trust and to have higher satisfaction with their physicians.’ (^ {23})</td>
</tr>
<tr>
<td>Lustman et al (2014)(^ {26})</td>
<td>‘It is not possible to say if higher interpersonal continuity is causal in reducing mortality, this result is as likely due to very ill patients changing doctors or going to the most readily available doctor.’ (^ {26})</td>
</tr>
<tr>
<td>Maarsingh et al (2016)(^ {27})</td>
<td>‘The assumed benefits of continuity of care include a better patient–provider relationship, increased patient satisfaction, improved uptake of preventive care, enhanced adherence to treatment, more accessible health care, and reduced healthcare use and costs. Especially vulnerable patients, such as older patients, are considered to benefit from continuity of care, as they are likely to have multiple chronic conditions.’ (^ {27})</td>
</tr>
<tr>
<td>McAlister et al (2016)(^ {28})</td>
<td>‘It seems reasonable to hypothesize that healthcare providers [physicians or nurses/pharmacists] who have a longer-term relationship with a patient are likely to have a better sense of that patient’s unique situation and the numerous nonmedical issues that influence hospitalization risk.’ (^ {28})</td>
</tr>
<tr>
<td>Geroldinger et al (2018)(^ {29})</td>
<td>Patients who benefit from multidisciplinary care, which is reflected by low-total continuity, may have a smaller risk of mortality. Measures of continuity are sensitive to the types of medical disciplines taken into account.</td>
</tr>
</tbody>
</table>

| Entire primary care population | |
|**Levene et al (2012)\(^ {29} \)** | ‘Starfield et al identified mechanisms potentially accounting for the beneficial impact of primary care on population health, including greater access to needed services, better quality of care, greater focus on prevention, earlier disease management, and the cumulative effect, with a holistic focus, of greater continuity and comprehensiveness.’ \(^ {29} \) |

| Honeyford et al (2013)\(^ {30} \) | In a referenced conceptual model, the authors suggest that quality primary health care (access with sustained patient relationships and/or interventions) can modify the relationship between risk factors and probability of death. |
patient may also deviate from professional norms, whereby the doctor and patient prioritise the patient’s wishes, even if these conflict with professional standards — as such, an apparently good agent might not be to the patient’s longer-term benefit.

Another benefit from relationship continuity may be that GPs allow for previous consulting behaviour in patients they know, and so set different thresholds for responding with tests or treatments. This could lead to cost savings and lower mortality if inappropriate medical activity was avoided. Consistent with the findings of the present review, seeing the same physician may not only bring many virtues, but also some vices: virtues of knowledge, trust, and commitment are countered by overfamiliarity and restricted viewpoints. The virtues usually predominate, but not overwhelmingly so.

Implications for research
Is the observed association causal? Perhaps patients who manage to concentrate their care to one provider live longer for some other confounding reason. Such concentration may increase or decline near death, when greater need and urgency for consultations makes continuity both more desirable and more difficult. Research should also investigate the meaning of different measures of continuity and relate this to the relationship, informational, and management types described.

Studies are required on: the feasibility of improving continuity; continuity with other clinicians, especially nurses; and which patients benefit from continuity and which suffer. Randomised trials comparing enhanced continuity with normal care could be very persuasive. As older patients tend to want continuity, are more prepared to wait to obtain it, and may — because of their increased multimorbidity — benefit more than their younger counterparts, primary care trials should initially focus on them. One such trial has started (personal communication, OR Maarsingh, 2020), but more are needed.

More qualitative work is also needed on: how continuity is achieved (or not) in modern practices with part-time clinicians; how patients achieve continuity; and how practices, and receptionists in particular, can enhance it.

The findings presented here are consistent with an association between continuity and mortality, although direct experimental evidence is desirable. Policymakers may aim to improve efficiency, even at the price of impersonal care, but should realise that the resulting discontinuities could make matters worse for patient satisfaction, hospital use, and, probably, mortality. New patterns of care must be designed to avoid these outcomes.

Funding
None.

Ethical approval
Not required.

Provenance
Freely submitted; externally peer reviewed.

Competing interests
The authors have declared no competing interests.

Acknowledgements
The authors are grateful to the libraries, secretaries, and study authors who responded to their requests, along with the following authors of included studies who provided additional data: Suzanne Bentler, Frederic Wolinsky, Finlay McAlister, Erik Youngson, and Otto Maarsingh.

Discuss this article
Contribute and read comments about this article: bjgp.org/letters
REFERENCES

