Bigger practices are associated with decreased patient satisfaction and perceptions of access

The number of GP practices continues to decline year-on-year, while the population grows. This has led to an increasing GP list size, and some practices have merged or been taken over by larger groups. In 2016, the Care Quality Commission chief inspector said the days of single-handed GPs are over. A colleague and I were recently discussing patient access and our personal experience as service users had become worse after our practices either merged or were taken over by a group. This made me question, ‘Is practice list size associated with patient satisfaction or perceptions of access?’

A seminal paper in 1995 concluded that patients preferred smaller practices, but was this still reflected in more recent data? I downloaded the 2022 GP Patient Survey (GPPS) results and the number of patients registered at practices. Excluded small practices (list size of <1000) and those where data were not available for the following questions: 1) ‘Overall, how would you describe your experience of making an appointment?’ and 2) ‘Overall, how would you describe your experience of your GP practice?’

Data were analysed using Stata (version 17.0) and my code is publicly available. The final analysis included 6389 practices with a mean list size of 9,551 (standard deviation 6,394, range 1022 to 108,789).

Multilevel mixed-effects logistic regression was used to model the likelihood of patients reporting a ‘good’ (very good or fairly good) experience to the aforementioned GPPS questions against the number of patients registered at a practice. Adjustments were made for the number of patients per GP and factors reported to impact on patient satisfaction (Table 1).

Increasing practice list size was negatively associated with the likelihood of patients reporting a ‘good’ experience of making an appointment and overall with their practice (odds ratio [OR] 0.85, P<0.001 and OR 0.89, P<0.001 per increase of 5000 patients, respectively). Table 1 demonstrates this trend when practices were analysed categorically by list size.

Of course, association does not mean causation. Nevertheless, more research is needed to further assess the impacts of growing list size and practice mergers, as this analysis and my lived experience suggests bigger is not always better.

Peter J Edwards,
GP Academic Clinical Fellow ST4, Centre for Academic Primary Care, University of Bristol, Bristol.
Email: peter.edwards@bristol.ac.uk

REFERENCES
4. NHS Digital. Patients registered at a GP practice —

Table 1. Patients’ overall experience of their practice and making an appointment by practice list size

<table>
<thead>
<tr>
<th>List sizea</th>
<th>Freq (n)</th>
<th>Mean % reporting 'good'b</th>
<th>SD of % reporting 'good'b</th>
<th>Odds ratioc</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 to 1999</td>
<td>4019</td>
<td>63.3</td>
<td>15.7</td>
<td>1</td>
<td>0.68</td>
<td>0.66 to 0.71</td>
</tr>
<tr>
<td>2000 to 2999</td>
<td>2052</td>
<td>56.4</td>
<td>14.4</td>
<td>1</td>
<td>0.68</td>
<td>0.66 to 0.71</td>
</tr>
<tr>
<td>3000 to 3999</td>
<td>238</td>
<td>53.0</td>
<td>14.1</td>
<td>1</td>
<td>0.59</td>
<td>0.54 to 0.64</td>
</tr>
<tr>
<td>4000 to 4999</td>
<td>47</td>
<td>50.0</td>
<td>14.9</td>
<td>1</td>
<td>0.48</td>
<td>0.44 to 0.64</td>
</tr>
<tr>
<td>5000 to 5999</td>
<td>17</td>
<td>49.2</td>
<td>15.3</td>
<td>1</td>
<td>0.48</td>
<td>0.45 to 0.63</td>
</tr>
<tr>
<td>≥60 000</td>
<td>7</td>
<td>48.9</td>
<td>14.9</td>
<td>1</td>
<td>0.64</td>
<td>0.39 to 1.05</td>
</tr>
</tbody>
</table>

Wald test across groups <0.001

Table 1. Patients’ overall experience of their practice and making an appointment by practice list size

<table>
<thead>
<tr>
<th>List sizea</th>
<th>Freq (n)</th>
<th>Mean % reporting 'good'b</th>
<th>SD of % reporting 'good'b</th>
<th>Odds ratioc</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 to 1999</td>
<td>4019</td>
<td>77.7</td>
<td>12.1</td>
<td>1</td>
<td>0.76</td>
<td>0.74 to 0.79</td>
</tr>
<tr>
<td>2000 to 2999</td>
<td>2052</td>
<td>74.8</td>
<td>11.7</td>
<td>1</td>
<td>0.76</td>
<td>0.74 to 0.79</td>
</tr>
<tr>
<td>3000 to 3999</td>
<td>238</td>
<td>72.1</td>
<td>11.4</td>
<td>1</td>
<td>0.65</td>
<td>0.60 to 0.71</td>
</tr>
<tr>
<td>4000 to 4999</td>
<td>47</td>
<td>69.8</td>
<td>11.4</td>
<td>1</td>
<td>0.59</td>
<td>0.54 to 0.63</td>
</tr>
<tr>
<td>5000 to 5999</td>
<td>17</td>
<td>68.9</td>
<td>15.3</td>
<td>1</td>
<td>0.54</td>
<td>0.40 to 0.74</td>
</tr>
<tr>
<td>≥60 000</td>
<td>7</td>
<td>66.7</td>
<td>11.6</td>
<td>1</td>
<td>0.53</td>
<td>0.35 to 0.81</td>
</tr>
</tbody>
</table>

Wald test across groups <0.001

Letters

All letters are subject to editing and may be shortened. General letters can be sent to bjgpdisc@rcgp.org.uk (please include your postal address for publication), and letters responding directly to BJGP articles can be submitted online via eLetters. We regret we cannot notify authors regarding publication. For submission instructions visit bjgp.org/letters
Clinical prediction tools to identify patients at highest risk of myeloma in primary care

Koshiaris et al presented an equation for predicting 495 patients with myeloma within 2 years, who were aged ≥40 years.1 Older age, male sex, back, chest, and rib pain, nosebleeds, low haemoglobin, platelets, white cell count, raised mean corpuscular volume, calcium, and erythrocyte sedimentation rate were selected as significant predictors. By using full blood count, an area under the curve (AUC) (95% CI) was 0.84 (0.81 to 0.87), and sensitivity (95% CI) at the highest risk decile was 62% (55% to 68%). By using the all-test model, the AUC (95% CI) was 0.87 (0.81 to 0.90) and sensitivity (95% CI) at the highest risk decile was 62% (55% to 68%). Regarding the prediction model of myeloma, I understand that the independent variables may be limited for general physicians, and an interval period between medical check and diagnosis of myeloma may be important for the prediction model.

On this point, Blair et al conducted a 16-year follow-up study, and reported the significance of anthropometry for contributing diagnosis of myeloma in postmenopausal women.2 In an age-adjusted model, weight and waist circumference significantly contributed to the risk of myeloma. In contrast, body mass index (BMI) did not relate to the risk of myeloma. This information was partly confirmed by reports by Hagström et al.3 During a median follow-up of 20 years, waist circumference and waist–hip ratio were significant predictors for myeloma, and BMI did not significantly become a predictor of myeloma. Body composition may be a good predictor for long-term risk of myeloma.

Tomoyuki Kawada,
Professor, Nippon Medical School, Tokyo.
Email: kawada@nms.ac.jp

REFERENCES

A step towards improving cervical screening uptake

We thank Landy and colleagues for their recent article on non-speculum clinician-taken samples for human papillomavirus (HPV) testing.4 This article further validates an approach that may improve participation in cervical screening and coincides with the introduction of an option for a self-collected vaginal sample as part of Australia’s National Cervical Screening Program. This change, which came in on 1 July this year, enables women to self-collect a vaginal sample within a general practice to screen for 14 high-risk HPV types.

However, rates of cervical screening are lower in Australia compared with the UK. For example, between 2018 and 2020, the estimated 3-year participation rate was 56%, much lower than the 68.9% of women aged 25 to 49 years and 75.0% of women aged 50 to 64 years screened in the UK.2,3 This change acts to increase participation in under-screened groups. In Australia, rates of under-screening are greatest for those aged 70–74 years (27% vs 61% in 45–49-year-olds), the same group who may benefit from the option of either self-collected or a non-speculum clinician-collected sample in those who prefer it.4 Disparities in cervical screening participation occur by remoteness and socioeconomic status, with rates as low as 40% in some regions.5 Strategies such as mailing out self-sampling kits, as tested in a previous randomised controlled trial (RCT) by the same authors, hold the potential to overcome limitations in access to GPs, particularly in rural areas where difficulties in accessing care have the greatest impact on under-screened groups.

Brent P Venning,
GP and PhD Candidate, University of Melbourne, Melbourne.
Email: brent.venning@unimelb.edu.au
Meena Rafiq,
Academic GP and Clinical Research Fellow, UCL, London, and University of Melbourne, Melbourne.

REFERENCES