Skip to main content
Log in

On the Pathophysiology of Migraine—Links for “Empirically Based Treatment” with Neurofeedback

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Psychophysiological data support the concept that migraine is the result of cortical hypersensitivity, hyperactivity, and a lack of habituation. There is evidence that this is a brain-stem related information processing dysfunction. This cortical activity reflects a periodicity between 2 migraine attacks and it may be due to endogenous or exogenous factors. In the few days preceding the next attack slow cortical potentials are highest and habituation delay experimentally recorded during contingent negative variation is at a maximum. These striking features of slow cortical potentials are predictors of the next attack. The pronounced negativity can be fed back to the patient. The data support the hypothesis that a change in amplitudes of slow cortical potentials is caused by altered habituation during the recording session. This kind of neurofeedback can be characterized as “empirically based” because it improves habituation and it proves to be clinically efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Ahmed, I. (1999). Contingent negative variation in migraine: Effect of beta blocker therapy. Clinical Encephalography, 30, 21–23.

    Google Scholar 

  • Anokhin, A. P., Birbaumer, N., Lutzenberger, W., Nikolaev, A., & Vogel, F. (1996). Age increases brain complexity. Electroencephalography and Clinical Neurophysiology, 99, 63–68.

    Google Scholar 

  • Aurora, S. K., Ahmad, B. K., Welch, K. M. A., Bhardhwaj, P., & Ramadan, N. M. (1998). Transkranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology, 50, 1111–1114.

    Google Scholar 

  • Brody, S., Rau, H., Köhler, F., Schupp, H., Lutzenberger, W., & Birbaumer, N. (1994). Slow cortical potential biofeedback and the startle reflex. Biofeedback and Self-Regulation, 19, 1–11.

    Google Scholar 

  • Elbert, T. (1993). Slow cortical potentials reflect the regulation of cortical excitability. In W. C. McCallum & H. Curry (Eds.), Slow potentials in the human brain (pp. 235–252). New York: Plenum.

    Google Scholar 

  • Evers, S., Quibelday, F., Grotemeyer, K.-H., Suhr, B., & Husstedt, I.-W. (1999). Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. Cephalalgia, 19, 485–491.

    Google Scholar 

  • Ferrari, M. D. (1992). Biochemistry of migraine. Pathology Biology, 40, 284–292.

    Google Scholar 

  • Gerber, W.-D., & Schoenen, J. (1998). Biobehavioral correlates in migraine: The role of hypersensitivity and information-processing dysfunction. Cephalalgia, 18, 5–11.

    Google Scholar 

  • Goadsby, P. J. (1997). Current concepts of the pathophysiology of migraine. Neurology Clinics, 15, 27–42.

    Google Scholar 

  • Göbel, H., Krapat, S., Ensink, F. B., & Soyka, D. (1993). Comparison of contingent negative variation between migraine interval and migraine attack before and after treatment with sumatriptan. Headache, 33,570–572.

    Google Scholar 

  • Hardebo, J. E. (1992). A cortical excitatory wave may cause both the aura and the headache of migraine. Cephalalgia, 12, 75–80.

    Google Scholar 

  • Kropp, P., & Gerber, W.-D. (1993). Is increased amplitude of contingent negative variation in migraine due to cortical hyperactivity or to reduced habituation? Cephalalgia, 13, 37–41.

    Google Scholar 

  • Kropp, P., & Gerber, W.-D. (1995). Contingent negative variation during migraine attack and interval: Evidence for normalization of slow cortical potentials during the attack. Cephalalgia, 15, 123–128.

    Google Scholar 

  • Kropp, P., & Gerber, W.-D. (1998). Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neuroscience Letters, 257, 73–76.

    Google Scholar 

  • Kropp, P., Siniatchkin, M., Stephani, U., & Gerber, W.-D. (1999). Migraine–evidence for a disturbance of cerebral maturation in man? Neuroscience Letters, 276, 181–184.

    Google Scholar 

  • Lauritzen, M. (2001). Cortical spreading depression in migraine. Cephalalgia, 21(7), 757–760.

    Google Scholar 

  • Lodi, R., Montagna, P., Soriani, S., Iotti, S., Araldi, C., Cortelli, P., et al. (1997). Deficit of brain and sceletal muscle bioenergetics and low brain magnesium in juvenile migraine: An in vivo 31P magnetic resonance spectroscopy study. Pediatric Research, 42, 866–871.

    Google Scholar 

  • Lutzenberger, W., Roberts, L. E., & Birbaumer, W. (1993). Memory performance and area-specific self-regulation of slow cortical potentials: Dual-task interference. International Journal of Psychophysiology, 15, 217–226.

    Google Scholar 

  • Maertens de Noordhout, A., Timsit-Berthier, M., Timsit, M., & Schoenen, J. (1986). Contingent negative variation in headache. Annals of Neurology, 19, 78–80.

    Google Scholar 

  • Moskowitz, M. A. (1993). Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology, 41, 182–186.

    Google Scholar 

  • Nagel-Leiby, S., Welch, K. M., D'Andrea, G., Grundfeld, S., & Brown, E. (1990). Event-related slow potentials and associated catecholamine function in migraine. Cephalalgia, 10, 317–329.

    Google Scholar 

  • Oades, B. A., Dittmann-Balcar, A., & Zerbin, D. (1997). Development and topography of auditory event-related potentials (ERPs): Mismatch and processing negativity in individuals 8-22 years of age. Psychophysiology, 34, 677–693.

    Google Scholar 

  • Rockstroh, B., Elbert, T., Birbaumer, N., Wolf, P., Düchting-Röth, A., Reker, M., et al. (1993). Cortical selfregulation in patients with epilepsies. Epilepsy Research, 14, 63–72.

    Google Scholar 

  • Rockstroh, B., Elbert, T., Canavan, A., Lutzenberger, W., & Birbaumer, N. (1998). Slow cortical potentials and behavior (2nd ed.). Baltimore: Urban & Schwarzenberg.

    Google Scholar 

  • Rohrbaugh, J.W., McCallum, W. C., Gaillard, A.W., Simons, R. F., Birbaumer, N., & Papakostopoulos, D. (1986). ERPs associated with preparatory and movement-related processes. A review. Electroencephalography and Clinical Neurophysiology, 38, 189–229.

    Google Scholar 

  • Schoenen, J. (1986). Beta blockers and the central nervous system. Cephalalgia, 6, 47–54.

    Google Scholar 

  • Schoenen, J. (1996). Abnormal cortical information processing between migraine attacks. In M. Sandler, M. Ferrari, & S. Harnett (Eds.), Migraine: Pharmacology and genetics (pp. 233–253). London: Altman.

    Google Scholar 

  • Schoenen, J. (1998). The pathophysiology of migraine: A review based on the literature and on personal contributions. Functional Neurology, 1, 7–16.

    Google Scholar 

  • Siniatchkin, M., Hierundar, A., Kropp, P., Kuhnert, R., & Gerber, W.-D. (2000). Self-regulation of slow cortical potentials in children with migraine: An exploratory study. Applied Psychophysiology and Biofeedback, 25(1), 13–32.

    Google Scholar 

  • Wang, W., & Schoenen, J. (1998). Interictal potentiation of passive “oddball” auditory event-related potentials in migraine. Cephalalgia, 18, 261–265.

    Google Scholar 

  • Weiller, C., May, A., Limmroth, V., Jupner, M., Kaube, H., Schayck, R. V., et al. (1995). Brain stem activation in spontaneous human migraine attacks. Nature Medicine, 1, 658–660.

    Google Scholar 

  • Welch, K. M. A. (1989). The search for a universal hypothesis of migraine mechanisms. The Cummings Lecture. In F. Clifford-Rose (Ed.), New advances in headache research. Nishimura: Smith-Gordon.

    Google Scholar 

  • Welch, K. M. A., Cao, Y., Aurora, S., Wigins, G., & Vikinstad, E. M. (1998). MRI of the occipital cortex, red nucleus, and substantia nigra during visual aura of migraine. Neurology, 51, 1465–1469.

    Google Scholar 

  • Welch, K. M. A., & Ramadan, N. M. (1995). Mitochondria, magnesium and migraine. Journal of Neurological Sciences, 134, 9–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kropp, P., Siniatchkin, M. & Gerber, WD. On the Pathophysiology of Migraine—Links for “Empirically Based Treatment” with Neurofeedback. Appl Psychophysiol Biofeedback 27, 203–213 (2002). https://doi.org/10.1023/A:1016251912324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016251912324

Navigation