Skip to main content
Log in

Drug-Induced Cutaneous Photosensitivity

Incidence, Mechanism, Prevention and Management

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The interaction of sunlight with drug medication leads to photosensitivity responses in susceptible patients, and has the potential to increase the incidence of skin cancer. Adverse photosensitivity responses to drugs occur predominantly as a phototoxic reaction which is more immediate than photoallergy, and can be reversed by withdrawal or substitution of the drug. The bias and inaccuracy of the reporting procedure for these adverse reactions is a consequence of the difficulty in distinguishing between sunburn and a mild drug photosensitivity reaction, together with the patient being able to control the incidence by taking protective action. The drug classes that currently are eliciting a high level of adverse photosensitivity are the diuretic, antibacterial and nonsteroidal anti-inflammatory drugs (NSAIDs). Photosensitising chemicals usually have a low molecular weight (200 to 500 Daltons) and are planar, tricyclic, or polycyclic configurations, often with heteroatoms in their structures enabling resonance stabilisation. All absorb ultraviolet (UV) and/or visible radiation, a characteristic that is essential for the chemical to be regarded as a photosensitiser. The photochemical and photobiological mechanisms underlying the adverse reactions caused by the more photoactive drugs are mainly free radical in nature, but reactive oxygen species are also involved. Drugs that contain chlorine substituents in their chemical structure, such as hydrochlorthiazide, furosemide and chlorpromazine, exhibit photochemical activity that is traced to the UV-induced dissociation of the chlorine substituent leading to free radical reactions with lipids, proteins and DNA. The photochemical mechanisms for the NSAIDs that contain the 2-aryl propionic acid group involve decarboxylation as the primary step, with subsequent free radical activity. In aerated systems, the reactive excited singlet form of oxygen is produced with high efficiency. This form of oxygen is highly reactive towards lipids and proteins. NSAIDs without the 2-arylpropionic acid group are also photoactive, but with differing mechanisms leading to a less severe biological outcome. In the antibacterial drug class, the tetracyclines, fluoroquinolones and sulfonamides are the most photoactive. Photocontact dermatitis due to topically applied agents interacting with sunlight has been reported for some sunscreen and cosmetic ingredients, as well as local anaesthetic and antiacne agents. Prevention of photosensitivity involves adequate protection from the sun with clothing and sunscreens. In concert with the preponderance of free radical mechanisms involving the photosensitising drugs, some recent studies suggest that diet supplementation with antioxidants may be beneficial in increasing the minimum erythemal UV radiation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Table II

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (IARC). Solar and ultraviolet radiation. IARC Monogr Eval Carcinog Risks Hum 1992; 55: 1–316

  2. Marks R. Epidemiology of non-melanoma skin cancer and solar keratoses in Australia: a tale of self-immolation in Elysian fields [review]. Australas J Dermatol 1997; 38Suppl. 1: S26–9

    PubMed  Google Scholar 

  3. Rusonis ES, Rusonis PA, Miller C, et al. Skin cancer detection and prevention: a community program promoting sun safe behaviours. Md Med J 1999; 48(4): 169–72

    PubMed  CAS  Google Scholar 

  4. Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies [review]. Cancer Causes Control 2001; 12(1): 69–82

    Article  PubMed  CAS  Google Scholar 

  5. Jagger J. Solar-UV actions on living cells. New York: Praeger Scientific, 1985: 1–10

    Google Scholar 

  6. Loomis WF. Rickets. Sci Am 1970; 223(6): 76–82

    Article  PubMed  CAS  Google Scholar 

  7. Parrish JA, Anderson RR, Urbach F, et al. UV-A: Biological effects of ultraviolet radiation with emphasis on human responses to longwave ultraviolet. New York: Plenum Press, 1978

    Google Scholar 

  8. Epstein JH. Photomedicine. In: Smith KC, editor. The science of photobiology. 2nd ed. New York: Plenum Press, 1989: 155–92

    Chapter  Google Scholar 

  9. Kocsard E. Solar keratoses and their relationship to non-melanoma skin cancers [review]. Australas J Dermatol 1997; 38Suppl. 1: S30

    PubMed  Google Scholar 

  10. Russell DH. Ornithine decarboxylase: a key regulatory enzyme in normal and neoplastic growth. Drug Metab Rev 1985; 16: 1–88

    Article  PubMed  CAS  Google Scholar 

  11. Dahlback A, Henriksen T, Larsen SHH, et al. Biological UV-doses and the effect of an ozone layer depletion. Photochem Photobiol 1989; 49: 621–5

    Article  PubMed  CAS  Google Scholar 

  12. Sobolev I. Effect of column ozone on the variability of biologically effective UV radiation at high southern latitudes. Photochem Photobiol 2000; 72: 753–65

    Article  PubMed  CAS  Google Scholar 

  13. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis and management. Lancet 2000; 356: 1255–9

    Article  PubMed  CAS  Google Scholar 

  14. Baker CS. Photosensitivity. Med J Aust 1996; 165: 96–101

    PubMed  CAS  Google Scholar 

  15. Epstein JH. Phototoxicity and photoallergy. Semin Cutan Med Surg 1999; 18: 274–84

    Article  PubMed  CAS  Google Scholar 

  16. Dall’ Acqua F, Jori G. Photochemotherapy. In: Foye WO, Lemke TL, Williams DA, editors. Principles of medicinal chemistry. 4th ed. Baltimore: Williams and Wilkins, 1995: 893–907

    Google Scholar 

  17. Ackroyd R, Kelty C, Brown N, et al. The history of photodetection and photodynamic therapy. Photochem Photobiol 2001; 74(5): 656–69

    Article  PubMed  CAS  Google Scholar 

  18. Avalos J, Maibach HI, editors. Dermatologic botany. Boca Raton: CRC Press, 1999: 51–65

    Google Scholar 

  19. Diwu Z. Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem Photobiol 1995; 61: 529–39

    Article  PubMed  CAS  Google Scholar 

  20. Gould JW, Mercurio MG, Elmets CA. Cutaneous photosensitivity diseases induced by exogenous agents. J Am Acad Dermatol 1995; 33: 551–73

    Article  PubMed  CAS  Google Scholar 

  21. Magnus IA. Dermatological photobiology. London: Blackwells, 1976: 213–215

    Google Scholar 

  22. Australian Department of Health. Adverse Drug Reactions Advisory Committee (ADRAC). A sunburnt country. Adverse Drug Reactions Bulletin. Canberra, Mar 1983, Feb 1987

  23. Harth Y, Rapoport M. Phototoxicity associated with antipsychotics, antidepressants and anxiolytics. Drug Saf 1996; 14: 252–9

    Article  PubMed  CAS  Google Scholar 

  24. Wainwright NJ, Collins P, Ferguson J. Photosensitivity associated with antibacterial agents. Drug Saf 1993; 9: 437–40

    Article  PubMed  CAS  Google Scholar 

  25. Mammen L, Schmidt CP. Photosensitivity reactions: a case report involving NSAIDs. Am Fam Physician 1995; 52: 575–9

    PubMed  CAS  Google Scholar 

  26. Dukes MNG, Aronson JK, editors. Meyler’s side effects of drugs. 14th ed. Amsterdam: Elsevier, 2000

    Google Scholar 

  27. Litt JZ. Drug eruption reference manual 2000. New York: Parthenon, 2000, The Pharmacists guide to drug eruptions and interactions

    Google Scholar 

  28. Cooper SM, George S. Photosensitivity reaction associated with use of the combined oral contraceptive. Br J Dermatol 2001: 144, 641–2

    Article  PubMed  CAS  Google Scholar 

  29. Schoonderwoerd SA, Beiersbergen van Henegouwen GMJ, Luijendijk HJ. Photobinding of chlorpromazine and its sulfoxide in vitro and in vivo. Photochem Photobiol 1988; 48: 621–6

    Article  PubMed  CAS  Google Scholar 

  30. Western A, Van Camp JR, Bensasson R, et al. Involvement of singlet oxygen in the phototoxicity for a metabolite of piroxicam. Photochem Photobiol 1987; 46: 469–75

    Article  PubMed  CAS  Google Scholar 

  31. Kelly GE, Meikle WD, Moore DE. Promotion of UV-induced skin carcinogenesis by azathioprine: role of photochemical sensitization. Photochem Photobiol 1989; 49: 59–65

    Article  PubMed  CAS  Google Scholar 

  32. Johnson BE, Gibbs NK, Ferguson J. Quinolone antibiotic with potential to photosensitise skin tumorigenesis. J Photochem Photobiol B 1997; 37: 171–3

    Article  PubMed  CAS  Google Scholar 

  33. Stern RS, Laird N. The carcinogenic risk of treatments for severe psoriasis. Cancer 1994; 73: 2759–64

    Article  PubMed  CAS  Google Scholar 

  34. Sheil AGR. Cancer in dialysis and transplant patients. In: Morris PJ, editor. Kidney transplantation. 2nd ed. London: Grune and Stratton, 1984: 491–507

    Google Scholar 

  35. Monk B. Amiodarone-induced photosensitivity and basal cell carcinoma. Clin Exp Dermatol 1990; 15: 319–20

    Article  PubMed  CAS  Google Scholar 

  36. Monk B. Basal cell carcinoma following amiodarone therapy. Br J Dermatol 1995; 133: 148–9

    Article  PubMed  CAS  Google Scholar 

  37. Beiersbergen van Henegouwen GMJ. The interference of light in pharmacotherapy. Pharm Weekblad Sci 1981; 3: 85–95

    Google Scholar 

  38. Miranda MA. Assessment of the phototoxicity risk of new drugs. In: Seiler JP, Vilanova E, editors. Applied toxicology: approaches through basic science. Berlin: Springer-Verlag, 1997: 249–58

    Chapter  Google Scholar 

  39. Moore DE. Mechanisms of photosensitization by phototoxic drugs. Mutat Res 1998; 422: 165–73

    Article  PubMed  CAS  Google Scholar 

  40. Bensasson RV, Land EJ, Truscott TG. Flash photolysis and pulse radiolysis. Oxford: Pergamon Press, 1983: 1–19

    Google Scholar 

  41. Spikes JD. Photosensitization. In: Smith KC, editor. The science of photobiology. 2nd ed. New York: Plenum, 1989: 79–110

    Chapter  Google Scholar 

  42. Moore DE. Photophysical and photochemical aspects of drug stability. In: Tonnesen HH, editor. Photostability of drugs and drug formulations. London: Taylor and Francis, 1996: 9–38

    Google Scholar 

  43. Moore DE, Zhou W. Photodegradation of sulfamethoxazole: a chemical system capable of monitoring seasonal changes in UVB intensity. Photochem Photobiol 1994; 59: 497–502

    Article  PubMed  CAS  Google Scholar 

  44. Davies AK, Navaratnam S, Phillips GO. Photochemistry of chlorpromazine (2-chloro-N-(3-dimethylaminopropyl)phenothiazine) in propan-2-ol solution. J Chem Soc [Perkin] 1976; 2: 25–9

    Google Scholar 

  45. Tamat SR, Moore DE. Photolytic decomposition of hydrochlorothiazide. J Pharm Sci 1983; 72: 180–3

    Article  PubMed  CAS  Google Scholar 

  46. Moore DE, Hemmens VJ. Photosensitization by antimalarial drugs. Photochem Photobiol 1982; 36: 71–7

    Article  PubMed  CAS  Google Scholar 

  47. Moore DE, Sithipitaks V. Photolytic degradation of frusemide. J Pharm Pharmacol 1983; 35: 489–93

    Article  PubMed  CAS  Google Scholar 

  48. Moore DE, Roberts-Thomson S, Dong Z, et al. Photochemical studies on the anti-inflammatory drug diclofenac. Photochem Photobiol 1990; 52: 685–90

    Article  PubMed  CAS  Google Scholar 

  49. Li YNB, Moore DE, Tattam BN. Photodegradation of amiloride in aqueous solution. Int J Pharm 1999; 183: 109–16

    Article  PubMed  CAS  Google Scholar 

  50. Grimshaw J, de Silva AP. Photochemistry and photocyclization of aryl halides. Chem Soc Rev 1981; 10: 181–203

    Article  CAS  Google Scholar 

  51. Davies AK, Hilal NS, McKellar JF, et al. Photochemistry of tetrachlorosalicylanilide and its relevance to the persistent light reactor. Br J Dermatol 1975; 92: 143–7

    Article  PubMed  CAS  Google Scholar 

  52. Cornelissen PJG, Beijersbergen Van Henegouwen GMJ, Gerritsma KW. Photochemical decomposition of 1,4-benzodiazepines. Chlordiazepoxide. Int J Pharm 1979; 3: 205–20

    Article  CAS  Google Scholar 

  53. Beiersbergen van Henegouwen GMJ. Systemic phototoxicity of drugs and other xenobiotics. J Photochem Photobiol B 1991; 10: 183–210

    Article  Google Scholar 

  54. Gorman AA, Rodgers MAJ. Singlet molecular oxygen. Chem Soc Rev 1981; 10: 205–31

    Article  CAS  Google Scholar 

  55. Matheson ICB, Lee J. Chemical reaction rates of amino acids with singlet oxygen. Photochem Photobiol 1979; 29: 879–81

    Article  CAS  Google Scholar 

  56. Cadet J, Berger M, Douki T, et al. Oxidative damage to DNA: formation, measurement and biological significance. Rev Physiol Biochem Pharmacol 1997; 31: 1–87

    Google Scholar 

  57. Kochevar IE, Garcia C, Geacintov NE. Photoaddition to DNA by nonintercalated chlorpromazine molecules. Photochem Photobiol 1998; 68: 692–7

    Article  PubMed  CAS  Google Scholar 

  58. Kochevar IE. Phototoxicity of non-steroidal anti-inflammatory drugs: coincidence or specific mechanism? Arch Dermatol 1989; 125: 824–6

    Article  Google Scholar 

  59. Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res 1995; 44: 1–10

    Article  PubMed  CAS  Google Scholar 

  60. Moore DE, Chappuis PP. A comparative study of the photochemistry of the non-steroidal anti-inflammatory drugs, naproxen, benoxaprofen and indomethacin. Photochem Photobiol 1988; 47: 173–81

    Article  PubMed  CAS  Google Scholar 

  61. Costanzo LL, De Guidi G, Condorelli G, et al. Molecular mechanism of naproxen photosensitization in red blood cells. J Photochem Photobiol B 1989; 3: 223–5

    Article  PubMed  CAS  Google Scholar 

  62. Bosca F, Miranda MA, Vano L, et al. New photodegradation pathways of naproxen, a phototoxic non-steroidal antiinflammatory drug. J Photochem Photobiol A - Chemistry 1990; 54: 131–4

    Article  CAS  Google Scholar 

  63. Bosca F, Miranda MA, Carganico G, et al. Photochemical and photobiological properties of ketoprofen associated with the benzophenone chromophore. Photochem Photobiol 1994; 60: 96–101

    Article  PubMed  CAS  Google Scholar 

  64. Monti S, Sortino S, De Guidi G, et al. Photochemistry of 2-(3-benzoylphenyl)-propionic acid (ketoprofen). Pt 1. A picosecond and nanasecond time resolved study in aqueous solution. J Chem Soc Faraday Trans 1997; 93: 2269–75

    Article  CAS  Google Scholar 

  65. Castell JV, Gomez-Lechon ML, Miranda MA, et al. Photolytic degradation of ibuprofen: toxicity of the isolated photoproducts on fibroblasts and erythrocytes. Photochem Photobiol 1987; 46: 991–6

    Article  PubMed  CAS  Google Scholar 

  66. Costanzo LL, De Guidi G, Condorelli G, et al. Molecular mechanism of drug photosensitization-II. Photohemolysis sensitized by ketoprofen. Photochem Photobiol 1989; 50: 359–65

    Article  PubMed  CAS  Google Scholar 

  67. De la Pena D, Marti C, Nonell S, et al. Time-resolved near infrared studies on singlet oxygen production by the photosensitizing 2-arylpropionic acids. Photochem Photobiol 1997; 65: 828–32

    Article  Google Scholar 

  68. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press, 1999: 544–616, 784-859

    Google Scholar 

  69. Castell JV, Hernandez D, Gomez-Lechon MJ, et al. Photobinding of tiaprofenic acid and suprofen to proteins and cells. Photochem Photobiol 1998; 68: 660–5

    Article  PubMed  CAS  Google Scholar 

  70. Marguery MC, Chouini-Lalanne N, Ader JC, et al. Comparison of the DNA damage photoinduced by fenofibrate and ketoprofen, two phototoxic drugs of parent structure. Photochem Photobiol 1998; 68: 679–84

    Article  PubMed  CAS  Google Scholar 

  71. Moore DE, Ghebremeskel KA, Chen BBC, et al. Electron transfer processes in the reactivity of nonsteroidal anti-inflammatory drugs in the ground and excited states. Photochem Photobiol 1998; 68: 685–91

    Article  PubMed  CAS  Google Scholar 

  72. Stern RS, Bigby M. An expanded profile of cutaneous reactions to non-steroidal anti-inflammatory drugs. JAMA 1984; 252: 1433–7

    Article  PubMed  CAS  Google Scholar 

  73. Becker RS, Chakravorti S, Yoon M. Photochemical and photophysical properties of piroxicam and benoxaprofen in various solvents. Photochem Photobiol 1990; 51: 151–4

    Article  PubMed  CAS  Google Scholar 

  74. Miranda M, Vargas F, Serrano G. Photodegradation of piroxicam under aerobic conditions: the photochemical keys of the piroxicam enigma? J Photochem Photobiol B 1991; 8: 199–202

    Article  PubMed  CAS  Google Scholar 

  75. Ljunggren B. Propionic acid-derived non-steroidal anti-inflammatory drugs are phototoxic in vitro. Photodermatol 1985; 2: 3–9

    PubMed  CAS  Google Scholar 

  76. Ljunggren B, Lundberg K. In vivo phototoxicity of non-steroidal anti-inflammatory drugs evaluated by the mouse tail technique. Photodermatol 1985; 2: 377–82

    PubMed  CAS  Google Scholar 

  77. Dabestani R, Sik RH, Davies DG, et al. Spectroscopic studies of cutaneous photosensitizing agents. XVIII. Indomethacin. Photochem Photobiol 1993; 58: 367–73

    Article  PubMed  CAS  Google Scholar 

  78. Pawelczyk E, Knitter B. Kinetics of indomethacin degradation. Pharmazie 1977; 32: 698–9

    PubMed  CAS  Google Scholar 

  79. Weedon AC, Wong DF. The photochemistry of indomethacin. J Photochem Photobiol - A Chem 1991; 61: 27–33

    Article  CAS  Google Scholar 

  80. Lim HW, Thorbecke GJ, Baer RL, et al. Effect of indomethacin on alteration of ATPase-positive Langerhans cell density and cutaneous sunburn reaction induced by ultraviolet-B radiation. J Invest Dermatol 1983; 81: 455–8

    Article  PubMed  CAS  Google Scholar 

  81. Schwartz T, Gschnait F, Greiter F. Photoprotective effect of topical indomethacin - an experimental study. Dermatologica 1985; 171: 450–8

    Article  Google Scholar 

  82. Ikemura I. Contact and photocontact dermatitis due to benzydamine hydrochloride [letter]. Japanese J Clin Dermatol 1971; 25: 129

    Google Scholar 

  83. Fernandez De Corres L. Photodermatitis from benzydamine. Contact Dermatitis 1980; 6: 285–303

    Article  Google Scholar 

  84. Balato N, Lembo G, Patruno C, et al. Contact dermatitis from benzydamine hydrochloride [letter]. Contact Dermatitis 1986; 15: 105

    Article  PubMed  CAS  Google Scholar 

  85. Bruynzeel DP. Contact allergy to benzydamine. Contact Dermatitis 1986; 14: 313–4

    Article  PubMed  CAS  Google Scholar 

  86. Motley RJ, Reynolds AJ. Photodermatitis from benzydamine cream [letter]. Contact Dermatitis 1988; 19: 66

    Article  PubMed  CAS  Google Scholar 

  87. Foti C, Vena GA, Angelini G. Occupational contact allergy to benzydamine hydrochloride. Contact Dermatitis 1992; 27: 328–9

    Article  PubMed  CAS  Google Scholar 

  88. Goday BJJ, Ilardia LR, Soloeta AR. Allergic contact dermatitis from benzydamine with probable cross-reaction to indomethacin. Contact Dermatitis 1993; 28: 111–2

    Article  Google Scholar 

  89. Wang J, Moore DE. A study of the photodegradation of benzydamine in pharmaceutical formulations. J Pharm Biomed Anal 1992; 7: 535–40

    Article  Google Scholar 

  90. Moore DE, Wang J. Electron transfer mechanisms in photosensitization by the anti-inflammatory drug benzydamine. J Photochem Photobiol B 1998; 43: 175–80

    Article  PubMed  CAS  Google Scholar 

  91. Nielson OH. Sulfasalazine intolerance: a retrospective survey of use in patients with chronic inflammatory bowel disease. Scand J Gastroenterol 1982; 17: 389–93

    Article  Google Scholar 

  92. Wiebe JA, Moore DE. Oxidation photosensitized by tetracyclines. J Pharm Sci 1977; 66: 186–9

    Article  PubMed  CAS  Google Scholar 

  93. Moore DE, Fallon MP, Burt CD. Photo-oxidation of tetracycline - a differential pulse polarographic study. Int J Pharm 1983; 14: 133–42

    Article  CAS  Google Scholar 

  94. Ferguson J. Fluoroquinolone photosensitization: a review of clinical and laboratory studies. Photochem Photobiol 1995; 62: 954–8

    Article  CAS  Google Scholar 

  95. Ball P, Tillotson G. Tolerability of fluoroquinolone antibiotics. Drug Saf 1995; 13: 343–58

    Article  PubMed  CAS  Google Scholar 

  96. Fasani E, Profumo A, Albini A. Photochem photobiol 1998; 68: 666–74

    Article  PubMed  CAS  Google Scholar 

  97. Martinez LJ, Sik RH, Chignell CF. Fluoroquinolone antimicrobials: singlet oxygen, superoxide and phototoxicity. Photochem Photobiol 1998; 67: 399–403

    PubMed  CAS  Google Scholar 

  98. Berger TG, Dhar A. Lichenoid photoeruptions in human immunodeficiency virus infection. Arch Dermatol 1994; 130: 609–13

    Article  PubMed  CAS  Google Scholar 

  99. Zhou W, Moore DE. Photochemical decomposition of sulfamethoxazole. Int J Pharm 1994; 110: 55–63

    Article  CAS  Google Scholar 

  100. Bergh JJ, Breytenbach JC, Wessels PL. Degradation of trimethoprim. J Pharm Sci 1989; 78: 348–50

    Article  PubMed  CAS  Google Scholar 

  101. Zhou W, Moore DE. Photosensitizing activity of the antibacterial drugs sulfamethoxazole and trimethoprim. Photochem Photobiol 1997; 39: 63–72

    Article  CAS  Google Scholar 

  102. Moore DE, Burt CD. Photosensitization by drugs in surfactant solutions. Photochem Photobiol 1981; 34: 431–9

    CAS  Google Scholar 

  103. Miranda MA, Castell JV, Gómez-Lechón MJ, et al. In vitro photoperoxidation as an indicator of the potential phototoxicity of non-steroidal anti-inflammatory 2-arylpropionic acids. Toxicol In Vitro 1993; 7: 523–6

    Article  PubMed  CAS  Google Scholar 

  104. de Leo VA, Harber LC. Contact photodermatitis. In: Fisher AA, editor. Contact dermatitis. 3rd ed. Philadelphia (PA): Lee and Febiger, 1986: 454–69

    Google Scholar 

  105. Funk JO, Dromgoole SH, Maibach HI. Contact sensitisation and photocontact sensitisation of sunscreening agents. In: Lowe NJ, Shaath NA, Pathak MA, editors. Sunscreens. 2nd ed. New York: Dekker, 1997: 631–53

    Google Scholar 

  106. Fairhurst D, Mitchnick MA. Particulate sun blocks: general principals. In: Lowe NJ, Shaath NA, Pathak MA, editors. Sunscreens. 2nd ed. New York: Dekker, 1997: 313–51

    Google Scholar 

  107. Epstein JH. Adverse cutaneous reactions to the sun. In: Malkinson FD, Pearson RW, editors. Year book of dermatology. Chicago: Year Book Medical Publishers, 1971: 5–43

    Google Scholar 

  108. Standards Australia/Standards New Zealand. Sunscreen products - evaluation and classification. Sydney/Wellington, 1993. Report no. AS 2604

  109. Gies PH, Roy CR, Toomey S, et al. Protection against solar ultraviolet radiation. Mutat Res 1998; 422: 15–22

    Article  PubMed  CAS  Google Scholar 

  110. Reeve VE, Bosnic M, Boehm-Wilcox C, et al. Differential protection by two sunscreens from UV radiation-induced immunosuppression. J Invest Dermatol 1991; 97: 624–8

    Article  PubMed  CAS  Google Scholar 

  111. Wolf P, Donawho CK, Kripke ML. Effect of sunscreens on UV radiation-induced enhancement of melanoma growth inmice. J Natl Cancer Inst 1994; 86: 99–105

    Article  PubMed  CAS  Google Scholar 

  112. Serre I, Cano JP, Picot MC, et al. Immunosuppression induced by acute solar-simulated ultraviolet exposure in humans: prevention by a sunscreen with SPF 15 and high UVA protection. J Am Acad Dermatol 1997; 37: 187–94

    Article  PubMed  CAS  Google Scholar 

  113. Cuzzocrea S, Riley DP, Caputi AP, et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation and ischemia/reperfusion injury. Pharmacol Rev 2001; 53: 135–59

    PubMed  CAS  Google Scholar 

  114. Saliou C, Rimbach G, Moini H, et al. Solar UV induced erythema in human skin and nuclear factor-κB-dependent gene expression in keratinocytes are modulated by a French maritime pine bark extract. Free Radic Biol Med 2001; 30: 154–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, D.E. Drug-Induced Cutaneous Photosensitivity. Drug-Safety 25, 345–372 (2002). https://doi.org/10.2165/00002018-200225050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225050-00004

Keywords

Navigation