Skip to main content
Log in

Functional Instability Following Lateral Ankle Sprain

  • Injury Clinic
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Lateral ankle sprain (LAS) is an extremely common athletic injury. Despite extensive clinical and basic science research, the recurrence rate remains high. Functional instability (FI) following LAS is hypothesised to predispose individuals to reinjury because of neuromuscular deficits which result following injury. This paper provides an overview of the potential causes of FI which may manifest themselves clinically. The theoretical explanations of FI are discussed, as are implications for assessment and treatment of FI following LAS.

When LAS occurs, structural damage not only occurs to the ligamentous tissue, but also to the nervous and musculotendinous tissue around the ankle complex. While injury to the ligaments may result in laxity of the joints of the ankle complex, neuromuscular deficits are also likely to occur due to the injury to the nervous and musculotendinous tissue. These neuromuscular deficits may be manifested as impaired balance, reduced joint position sense, slower firing of the peroneal muscles to inversion perturbation of the ankle, slowed nerve conduction velocity, impaired cutaneous sensation, strength deficits and decreased dorsiflexion range of motion. Additionally, the abnormal formation of scar tissue after injury may lead to sinus tarsi syndrome or anterolateral impingement syndrome, which may also lead to FI of the ankle complex.

Assessment of patients with LAS must address not only joint laxity and swelling, but should include examination for neuromuscular deficits as well. The treatment and rehabilitation goals must also address restoration of neuromuscular function, as well as restoration of mechanical stability to the injured joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith RW, Reischl SF. Treatment of ankle sprains in young athletes. Am J Sports Med 1986; 14: 465–71

    PubMed  CAS  Google Scholar 

  2. Yeung MS, Chan K, So CH, et al. An epidemiological survey on ankle sprain. Br J Sports Med 1994; 28: 112–6

    PubMed  CAS  Google Scholar 

  3. Freeman MAR. Instability of the foot after injuries to the lateral ligament of the ankle. J Bone Joint Surg Br 1965; 47: 678–85

    PubMed  CAS  Google Scholar 

  4. Freeman MAR, Dean MRE, Hanham IWF. The etiology and prevention of functional instability of the foot. J Bone Joint Surg Br 1965; 47: 669–77

    PubMed  CAS  Google Scholar 

  5. Lephart SM, Pincivero DM, Rozzi SL. Proprioception of the ankle and knee. Sports Med 1998; 25: 149–55

    PubMed  CAS  Google Scholar 

  6. Garrick JG, Requa RK. The epidemiology of foot and ankle injuries in sports. Clin Sports Med 1988; 7: 29–36

    PubMed  CAS  Google Scholar 

  7. Viladot A, Lorenzo JC, Salazar J, et al. The subtalar joint: embryology and morphology. Foot Ankle 1984; 5: 54–66

    PubMed  CAS  Google Scholar 

  8. Michelson JD, Hutchins C. Mechanoreceptors in human ankle ligaments. J Bone Joint Surg Br 1995; 77: 219–24

    PubMed  CAS  Google Scholar 

  9. Takebayashi T, Yamashita T, Minaki Y, et al. Mechanosensitive afferent units in the lateral ligament of the ankle. J Bone Joint Surg Br 1997; 79: 490–3

    PubMed  CAS  Google Scholar 

  10. Norkin CC, Levangie PK. Joint structure and function: a comprehensive analysis. Philadelphia (PA): FA Davis, 1992

    Google Scholar 

  11. Lephart SM, Pincivero DM, Giroldo JL, et al. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med 1997; 25: 130–7

    PubMed  CAS  Google Scholar 

  12. Tropp H, Odenrick P, Gillquist J. Stabilometry recordings in functional and mechanical instability of the ankle joint. Int J Sports Med 1985; 6: 180–2

    PubMed  CAS  Google Scholar 

  13. De Simoni C, Wetz HH, Zanetti M, et al. Clinical examination and magnetic resonance imaging in the assessment of ankle sprains treated with an orthosis. Foot Ankle Int 1996; 17: 177–82

    PubMed  Google Scholar 

  14. Karlsson J, Andreasson GO. The effect of external ankle support in chronic lateral ankle joint instability: an electromyographic study. Am J Sports Med 1992; 20: 257–61

    PubMed  CAS  Google Scholar 

  15. Lentell G, Baas B, Lopez D, et al. The contributions of proprioceptive deficits, muscle function, and anatomic laxity to functional instability of the ankle. J Orthop Sports Phys Ther 1995; 21: 206–15

    PubMed  CAS  Google Scholar 

  16. Isakov E, Mizrahi J. Is balance impaired by recurrent sprained ankle? Br J Sports Med 1997; 31: 65–7

    PubMed  CAS  Google Scholar 

  17. Bernier JN, Perrin DH, Rijke A. Effect of unilateral functional instability of the ankle on postural sway and inversion and eversion strength. J Athletic Training 1997; 32: 226–32

    CAS  Google Scholar 

  18. Konradsen L, Olesen S, Hansen HM. Ankle sensorimotor control and eversion strength after acute ankle inversion injuries. Am J Sports Med 1998; 26: 72–7

    PubMed  CAS  Google Scholar 

  19. Wilkerson GB, Nitz AJ. Dynamic ankle stability: mechanical and neuromuscular interrelationships. J Sport Rehabil 1994; 3: 43–57

    Google Scholar 

  20. Tropp H, Odenrick P. Postural control in single-limb stance. J Orthop Res 1988; 6: 833–9

    PubMed  CAS  Google Scholar 

  21. Garn SN, Newton RA. Kinesthetic awareness in subjects with multiple ankle sprains. Phys Ther 1988; 68: 1667–71

    PubMed  CAS  Google Scholar 

  22. Gauffin H, Tropp H, Odenrick P. Effect of ankle disk training on postural control in patients with functional instability of the ankle joint. Int J Sports Med 1988; 9: 141–4

    PubMed  CAS  Google Scholar 

  23. Friden T, Zatterstrom R, Lindstrand A, et al. A stabilometric technique for evaluation of lower limb instabilities. Am J Sports Med 1989; 17: 118–22

    PubMed  CAS  Google Scholar 

  24. Lentell GL, Katzmann LL, Walters MR. The relationship between muscle function and ankle instability. J Orthop Sports Phys Ther 1990; 11: 605–11

    PubMed  CAS  Google Scholar 

  25. Orteza LC, Vogelbach WD, Denegar CR. The effect of molded orthotics on balance and pain while jogging following inversion ankle sprain. J Athletic Training 1992; 27: 80–4

    CAS  Google Scholar 

  26. Cornwall MW, Murrell PM. Postural sway following inversion sprain of the ankle. J Am Pediatric Med Assoc 1991; 81: 243–7

    CAS  Google Scholar 

  27. Golomer E, Dupui P, Bessou P. Spectral frequency analysis of dynamic balance in healthy and injured athletes. Arch Int Physiol Biomech Biophys 1994; 102: 225–9

    CAS  Google Scholar 

  28. Leanderson J, Wykman A, Eriksson E. Ankle sprain and postural sway in basketball players. Knee Surg Sports Traumatol Arthrosc 1993; 1: 203–5

    PubMed  CAS  Google Scholar 

  29. Goldie PA, Evans OM, Bach TM. Postural control following inversion injuries of the ankle. Arch Phys Med Rehab 1994; 75: 969–75

    CAS  Google Scholar 

  30. Forkin DM, Koczur C, Battle R, et al. Evaluation of kinesthetic deficits indicative of balance control in gymnasts with unilateral chronic ankle sprains. J Orthop Sports Phys Ther 1996; 23: 245–50

    PubMed  CAS  Google Scholar 

  31. Guskiewicz KM, Perrin DH. Effect of orthotics on postural sway following inversion ankle sprain. J Orthop Sports Phys Ther 1996; 23: 326–31

    PubMed  CAS  Google Scholar 

  32. Leanderson J, Eriksson E, Nilsson C. Proprioception in classical ballet dancers: a prospective study of the influence of an ankle sprain on proprioception in the ankle joint. Am J Sports Med 1996; 24: 370–4

    PubMed  CAS  Google Scholar 

  33. Perrin PP, Bene MC, Perrin CA, et al. Ankle trauma significantly impairs postural control: a study in basketball players and controls. Int J Sports Med 1997; 18: 387–92

    PubMed  CAS  Google Scholar 

  34. Guskiewicz KM, Perrin DH. Research and clinical applications of assessing balance. J Sport Rehabil 1996; 5: 45–63

    Google Scholar 

  35. Tropp H, Eckstrand J, Gillquist J. Factors affecting stabiliometry recordings of single limb stance. Am J Sports Med 1984; 12: 185–8

    PubMed  CAS  Google Scholar 

  36. Tropp H, Eckstrand J, Gillquist J. Stabilometry in functional instability of the ankle and its value in predicting injury. Med Sci Sports Exer 1984; 16: 64–6

    CAS  Google Scholar 

  37. Pinstaar A, Brynhildsen J, Tropp H. Postural corrections after standardized perturbations of single leg stance: effect of training and orthotic devices in patients with ankle instability. Br J Sports Med 1996; 30: 151–5

    Google Scholar 

  38. DeCarlo MS, Talbot RW. Evaluation of ankle proprioception following injection of the anterior talofibular ligament. J Orthop Sports Phys Ther 1986; 8: 70–6

    CAS  Google Scholar 

  39. Hertel JN, Guskiewicz KM, Kahler DM, et al. Effect of lateral ankle joint anesthesia on center of balance, postural sway, and joint position sense. J Sport Rehabil 1996; 5: 111–9

    Google Scholar 

  40. Glencross D, Thornton E. Position sense following joint injury. J Sports Med Phys Fitness 1981; 21: 23–7

    PubMed  CAS  Google Scholar 

  41. Gross MT. Effects of recurrent lateral ankle sprains on active and passive judgement of joint position. Phys Ther 1987; 67: 1505–9

    PubMed  CAS  Google Scholar 

  42. Payne KA, Berg K, Latin RW. Ankle injuries and ankle strength, flexibility, and proprioception in college basketball players. J Athletic Training 1997; 32: 221–5

    CAS  Google Scholar 

  43. Brunt RL, Anderson JC, Huntsman B, et al. Postural responses to lateral perturbation in healthy subjects and ankle sprain patients. Med Sci Sports Exer 1992; 24: 171–6

    CAS  Google Scholar 

  44. Konradsen L, Voight M, Hejsgaard C. Ankle inversion injuries: the role of the dynamic defense mechanism. Am J Sports Med 1997; 25: 54–8

    PubMed  CAS  Google Scholar 

  45. Konradsen L, Ravn JB. Ankle instability caused by prolonged peroneal reaction time. Acta Orthop Scand 1990; 61: 388–90

    PubMed  CAS  Google Scholar 

  46. Lofvenberg R, Karrholm J, Sundelin G, et al. Prolonged reaction time in patients with chronic lateral instability of the ankle. Am J Sports Med 1995; 23: 414–7

    PubMed  CAS  Google Scholar 

  47. Nawoczenski DA, Cook TM, Saltzman CL. The effect of foot orthotics on three-dimensional kinematics of the leg and rearfoot during running. J Orthop Sports Phys Ther 1995; 21: 317–27

    PubMed  CAS  Google Scholar 

  48. Isakov E, Mizrahi J, Solzi P, et al. Response of the peroneal muscles to sudden inversion stress during standing. Int J Sport Biomech 1986; 2: 100–6

    Google Scholar 

  49. Larsen E, Lund PM. Peroneal muscle function in chronically unstable ankles: a prospective preoperative and postoperative electromyographic study. Clin Orthop 1991; 272: 219–26

    PubMed  Google Scholar 

  50. Johnson MB, Johnson CL. Electromyographic response of peroneal muscles in surgical and nonsurgical injured ankles during sudden inversion. J Orthop Sports Phys Ther 1993; 18: 497–501

    PubMed  CAS  Google Scholar 

  51. Ebig M, Lephart SM, Burdett RG, et al. The effect of sudden inversion stress on EMG activity of the peroneal and tibialis anterior muscles in the chronically unstable ankle. J Orthop Sports Phys Ther 1997; 26: 73–7

    PubMed  CAS  Google Scholar 

  52. Sheth P, Yu B, Laskowski ER, et al. Ankle disk training influences reaction times of selected muscles in a simulated ankle sprain. Am J Sports Med 1997; 25: 538–43

    PubMed  CAS  Google Scholar 

  53. Lynch SA, Eklund U, Gottlieb D, et al. Electromyographic latency changes in the ankle musculature during inversion. Am J Sports Med 1996; 24: 362–9

    PubMed  CAS  Google Scholar 

  54. Hyslop GH. Injuries to the deep and superficial peroneal nerves complicating ankle sprain. Am J Surg 1951; 51: 436–8

    Google Scholar 

  55. MacIver DA, Letts RM. Paralysis of the peroneal nerve in association with a plantar flexion inversion injury of the ankle. Med Serv J Can 1966; 22: 285–7

    PubMed  CAS  Google Scholar 

  56. Nobel W. Peroneal palsy due to haematoma in the common peroneal nerve sheath after distal torsional fractures and inversion ankle sprains. J Bone Joint Surg Am 1966; 48: 1484–95

    PubMed  CAS  Google Scholar 

  57. Sidey JD. Weak ankles: a study of common peroneal nerve entrapment neuropathy. BMJ 1969; 3: 623–9

    PubMed  CAS  Google Scholar 

  58. Meals RA. Peroneal nerve palsy complicating ankle sprain: report of two cases and review of the literature. J Bone Joint Surg Am 1977; 59: 966–8

    PubMed  CAS  Google Scholar 

  59. Streib EW. Traction injury of the peroneal nerve caused by minor athletic trauma: electromyographic studies. Arch Neurol 1983; 40: 62–3

    PubMed  CAS  Google Scholar 

  60. Connolly TJ, Fitzgibbons TC, Weber LE. Injury to the peroneal nerve after ankle sprain: a case report. Nebr Med J 1990; 75: 6–7

    PubMed  CAS  Google Scholar 

  61. Stoff MD, Greene AF. Common peroneal nerve palsy following inversion ankle injury: a report of 2 cases. Phys Ther 1982; 62: 1463–4

    PubMed  CAS  Google Scholar 

  62. Nitz AJ, Dobner JJ, Kersey D. Nerve injury and grades II and III ankle sprains. Am J Sports Med 1985; 13: 177–82

    PubMed  CAS  Google Scholar 

  63. Kleinrensink GJ, Stoeckart R, Meulstee J, et al. Lowered motor conduction velocity of the peroneal nerve after inversion trauma. Med Sci Sports Exer 1994; 26: 877–83

    CAS  Google Scholar 

  64. Bullock-Saxton JE. Local sensation changes and altered hip muscle function following severe ankle sprain. Phys Ther 1994; 74: 23–34

    Google Scholar 

  65. Bosien WR, Staples OS, Russell SW. Residual disability following acute ankle sprains. J Bone Joint Surg Am 1955; 37: 1237–43

    PubMed  Google Scholar 

  66. Tropp H. Pronator weakness in functional instability of the ankle joint. Int J Sports Med 1986; 7: 291–4

    PubMed  CAS  Google Scholar 

  67. Bush KW. Predicting ankle sprain. J Manual Manipulative Ther 1996; 4: 54–8

    Google Scholar 

  68. Wilkerson GB, Pinerola JJ, Caturano RW. Inverter vs. evertor peak torque and power deficiencies associated with lateral ankle ligament injury. J Orthop Sports Phys Ther 1997; 26: 78–86

    PubMed  CAS  Google Scholar 

  69. Soderberg GL, Cook TM, Rider SC, et al. Electromyographic activity of selected leg musculature in subjects with normal and chronically sprained ankles performing on a BAPS board. Phys Ther 1991; 72: 514–22

    Google Scholar 

  70. Ryan L. Mechanical stability, muscle strength, and proprioception in the functionally unstable ankle. Aust J Physiother 1994; 40: 41–7

    Google Scholar 

  71. Ashton-Miller JA, Ottaviani RA, Hutchinson C, et al. What best protects the inverted weightbearing ankle against further inversion? Evertor muscle strength compares favorably with shoe height, athletic tape, and three orthoses. Am J Sports Med 1996; 24: 800–9

    PubMed  CAS  Google Scholar 

  72. Kaminski TW, Perrin DH, Mattacola CG, et al. The reliability and validity of ankle inversion and eversion torque measurements from the Kin Com II isokinetic dynamometer. J Sport Rehabil 1995; 4: 210–8

    Google Scholar 

  73. Wiesler ER, Hunter DM, Martin DF, et al. Ankle flexibility and injury patterns in dancers. Am J Sports Med 1996; 24: 754–7

    PubMed  CAS  Google Scholar 

  74. Wilson RW, Gieck JH, Gansneder BM, et al. Reliability and responsiveness of disablement measures following acute ankle sprains among athletes. J Orthop Sports Phys Ther 1998; 27: 348–55

    PubMed  CAS  Google Scholar 

  75. Baumhauer JF, Alosa DM, Renstrom PAFH, et al. A prospective study of ankle injury risk factors. Am J Sports Med 1995; 23: 564–70

    PubMed  CAS  Google Scholar 

  76. Meyer JM, Lagier R. Post-traumatic sinus tarsi syndrome: an anatomical and radiological study. Acta Orthop Scand 1977; 48: 121–8

    PubMed  CAS  Google Scholar 

  77. Taillard W, Meyer JM, Garcia J, et al. The sinus tarsi syndrome. Int Orthop 1981; 5: 117–30

    PubMed  CAS  Google Scholar 

  78. Lowy A, Schilero J, Kanat IO. Sinus tarsi syndrome: a postoperative analysis. J Foot Surg 1985; 24: 108–12

    PubMed  CAS  Google Scholar 

  79. O’Conner D. Sinus tarsi syndrome: a clinical entity. J Bone Joint Surg Am 1958; 18: 231–3

    Google Scholar 

  80. Shear MS, Baitch SP, Shear DB. Sinus tarsi syndrome: the importance of biomechanically-based evaluation and treatment. Arch Phys Med Rehabil 1993; 74: 777–81

    PubMed  CAS  Google Scholar 

  81. McCarroll JR, Schrader JW, Shelbourne KD, et al. Meniscoid lesions of the ankle in soccer players. Am J Sports Med 1987; 15: 255–7

    PubMed  CAS  Google Scholar 

  82. Martin DF, Curl WW, Baker CL. Arthroscopic treatment of chronic synovitis of the ankle. Arthroscopy 1989; 5: 110–4

    PubMed  CAS  Google Scholar 

  83. Thein R, Eichenblat M. Arthroscopic treatment of sports-related synovitis of the ankle. Am J Sports Med 1992; 20: 496–8

    PubMed  CAS  Google Scholar 

  84. Meislin RJ, Rose DJ, Parisien JS, et al. Arthroscopic treatment of synovial impingement of the ankle. Am J Sports Med 1993; 21: 186–9

    PubMed  CAS  Google Scholar 

  85. Liu SH, Nuccion SL, Finerman G. Diagnosis of anterolateral ankle impingement: comparison between magnetic resonance imaging and clinical examination. Am J Sports Med 1997; 25: 389–93

    PubMed  CAS  Google Scholar 

  86. Wilkerson GB. Treatment of inversion ankle sprains through synchronous application of focal compression and cold. Athletic Training 1991; 26: 220–37

    Google Scholar 

  87. Bonnin M, Tavernier T, Bouysset M. Split lesions of the peroneus brevis tendon in chronic ankle laxity. Am J Sports Med 1997; 25: 699–703

    PubMed  CAS  Google Scholar 

  88. Trettin DM, Browne JE. Osteoid osteoma of the tarsal cuboid presenting with recurrent ankle sprains in an adolescent: a case report. Foot Ankle Int 1995; 16: 30–3

    PubMed  CAS  Google Scholar 

  89. Montella BJ, O’Farrell DA, Furr WS, et al. Fibular osteochondroma presenting as chronic ankle sprain. Foot Ankle Int 1995; 16: 207–9

    PubMed  CAS  Google Scholar 

  90. Toy BJ. Conservative treatment of bilateral sural nerve entrapment in an ice hockey player. J Athletic Training 1996; 31: 68–70

    CAS  Google Scholar 

  91. Bandy WD, Strong L, Roberts T, et al. False aneurysm: a complication following an inversion ankle sprain. A case report. J Orthop Sports Phys Ther 1996; 23: 272–9

    PubMed  CAS  Google Scholar 

  92. Geppert MJ, Sobel M, Bohne HO. Lateral ankle instability as a cause of superior peroneal retinacular laxity: an anatomical and biomechanical study in cadaveric feet. Foot Ankle 1993; 14: 330–4

    PubMed  CAS  Google Scholar 

  93. Taga I, Shino K, Inoue M, et al. Articular cartilage lesion in ankle with lateral ligament injury: an arthroscopic study. Am J Sports Med 1993; 21: 120–7

    PubMed  CAS  Google Scholar 

  94. Hertel J, Denegar CR. A rehabilitation paradigm for restoring neuromuscular control following athletic injury. Athletic Ther Today 1998; 3 (5): 12–6

    Google Scholar 

  95. Worrell TW, Booher LD, Hench KM. Closed kinetic chain assessment following inversion ankle sprain. J Sport Rehabil 1994; 3: 197–203

    Google Scholar 

  96. Bunton EE, Pitney WA, Kane AW, et al. The role of limb torque, muscle action, and proprioception during closed kinetic chain rehabilitation of the lower extremity. J Athletic Training 1993; 28: 10–20

    CAS  Google Scholar 

  97. Tomaszewski D. T-band kicks ankle proprioception program. Athletic Training 1991; 26: 216–9

    Google Scholar 

  98. Wester JU, Jespersen SM, Nielsen KD, et al. Wobble board training after partial sprains of the lateral ligament of the ankle: a prospective randomized study. J Orthop Sports Phys Ther 1996; 23: 332–6

    PubMed  CAS  Google Scholar 

  99. Bernier JN, Perrin DH. Effect of coordination training on proprioception of the functionally unstable ankle. J Orthop Sports Phys Ther 1998; 27; 264–75

    PubMed  CAS  Google Scholar 

  100. Clanton TO. Instability of the subtalar joint. Orthop Clin North Am 1989; 20: 583–92

    PubMed  CAS  Google Scholar 

  101. Surve I, Schwellnus MP, Noakes T, et al. A fivefold reduction in the incidence of recurrent ankle sprains in soccer players using the Sport-Stirrup orthosis. Am J Sports Med 1994; 22: 601–6

    PubMed  CAS  Google Scholar 

  102. Sharpe SR, Knapik J, Jones B. Ankle braces effectively reduce recurrence of ankle sprains in female soccer players. J Athletic Training 1997; 32: 21–4

    CAS  Google Scholar 

  103. Tropp H, Askling C, Gillquist J. Prevention of ankle sprains. Am J Sports Med 1985; 13: 259–62

    PubMed  CAS  Google Scholar 

  104. Bennell KL, Goldie PA. The differential effects of external ankle support on postural control. J Orthop Sports Phys Ther 1994; 20: 287–95

    PubMed  CAS  Google Scholar 

  105. Kinzey SJ, Ingersoll CD, Knight KL. The effects of selected ankle appliances on postural control. J Athletic Training 1997; 32: 300–3

    CAS  Google Scholar 

  106. Warner JJ, Lephart S, Fu FH. Role of proprioception in pathoetiology of shoulder instability. Clin Orthop 1996; 330: 35–9

    PubMed  Google Scholar 

  107. Barrett DS, Cobb AG, Bentley G. Joint proprioception in normal, osteoarthritic, and replaced knees. J Bone Joint Surg Br 1991; 73: 53–6

    PubMed  CAS  Google Scholar 

  108. Harter RA, Osternig LR, Singer KM. Knee joint proprioception following anterior cruciate ligament reconstruction. J Sport Rehabil 1992; 1: 103–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Hertel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertel, J. Functional Instability Following Lateral Ankle Sprain. Sports Med 29, 361–371 (2000). https://doi.org/10.2165/00007256-200029050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200029050-00005

Keywords

Navigation